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The Wald test and Craḿer-Rao Bound for
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Abstract—By using signal processing techniques an estimate can be ob-
tained of activity in the brain from the electro- or magneto-encephalogram
(EEG or MEG). For a proper analysis, a test is required to indicate whether
the model for brain activity fits. A problem in using such tests is that often
not all assumptions are satisfied, like the assumption of the number of shells
in EEG. In such a case a test on the number of sources (model order) might
still be of interest. A detailed analysis is presented of the Wald test for these
cases. One of the advantages of the Wald test is that it can be used when
not all assumptions are satisfied. Two different, previously suggested Wald
tests in electromagnetic source analysis (EMSA) are examined: a test on
source amplitudes and a test on the closeness of source pairs. The Wald test
is analytically studied in terms of alternative hypotheses that are close to the
null hypothesis (local alternatives). It is shown that the Wald test is asymp-
totically unbiased, that is has the correct level and power, which makes
it appropriate to use in EMSA. An accurate estimate of the Craḿer-Rao
bound (CRB) is required for the use of the Wald test when not all assump-
tions are satisfied. The sandwich CRB is used for this purpose. It is defined
for non-separable least squares with constraints required for the Wald test
on amplitudes and MEG. Simulations with EEG show that when the sensor
positions are incorrect, or the number of shells is incorrect, or the conduc-
tivity parameter is incorrect, then the CRB and Wald test are still good,
with a moderate number of trials. Additionally, the CRB and Wald test
appear robust against an incorrect assumption on the noise covariance. A
combination of incorrect sensor positions and noise covariance does affect
the possibility of detecting a source with small amplitude.

Keywords— Source localization, separable least squares, approximate
model, model checking, parameter covariance, constrained optimization,
Fisher-information with constraints

I. I NTRODUCTION

IN electromagnetic source analysis (EMSA) an estimate is
obtained of the activity in the brain from the electro- or

magneto-encephaolgram (EEG or MEG) measured at or near the
scalp [1]. The inverse problem in which an estimate is obtained
relies on many assumptions [2], [3]. Some examples in EEG
are the number of shells [4], their conductivities [5], [6], their
shapes, the type of source (i.e. a dipole or quadrupole etc., see
e.g., [7], [8]), and the number of sources (see [9] when dipoles
are used).

A model comprised of several such assumptions is only an
approximation of what is really going on. In [7] it is shown that
dipoles are a good approximation of extended sources, but in [9]
and [10, Ch. 3] it is shown that using the incorrect number of
dipoles can have serious effects on localization. Also in [11] it is
shown that the distance between the brain and skull has a large
effect on sensitivity of both EEG and MEG. In addition, statisti-
cal assumptions, like the distribution of the noise, can affect the
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accuracy of the dipole parameters greatly [12].
Even if some of the assumptions like the number of shells in

EEG may be incorrect, it can still be of interest to know how
many sources are present (model order). Many methods to de-
tect sources and methods to determine the model order exist.
These methods vary from purely statistical based techniques like
the residual variance [9], or sequential tests based on singular
value decompositions [13], or multivariate testing [14] to signal
processing techniques like MUSIC [15], [16], and to biophysical
model based approaches [17], [18]. However, these methods do
not explicitly incorporate the fact that some of the assumptions
could be incorrect.

In the present paper, the notion of an approximate (incorrect)
model used in the statistical analysis is made precise and is used
to determine a proper goodness-of-fit (GOF) and model selec-
tion test. A GOF test determines whether the model fits the data
or not, and a model selection test compares different models,
for instance, two models with different number of sources. The
Wald test seems well suited for both these purposes because it
tests parameters directly and has asymptotically relatively large
power for hypotheses that are very ’similar’ (local alternatives).
The Wald test has been used before in similar settings [19], [20].
Two Wald tests are used in the context of EMSA, which have
been suggested in [21] for a single time sample, and in [22] for
a spatio-temporal model. The first is a test on source amplitudes.
The idea is that if a source has (nearly) zero amplitude it should
be considered as inactive. The other is a test on source ’close-
ness’. If the (Euclidean) distance between two sources is small,
then it might be too difficult to distinguish them and they could
be better modeled as one.

Both Wald tests proved to be useful when used as a model
selection test to determine model order (i.e. the number of
sources). In [22] the Wald tests were compared for the spatio-
temporal model to the Akaike and Bayesian information criteria
(AIC and BIC), and the residual variance. Both the AIC and
the Wald tests performed well, but the Wald tests have several
advantages over the AIC: (1) the Wald tests indicate whether a
model fits (GOF), whereas the AIC can only compare models,
(2) each dipole can be tested, with the Wald test on amplitudes,
to determine at which time samples it is active, and finally (3) the
Wald tests can be used even if not all assumptions are satisfied.
For example, if the sensor positions are incorrectly measured in
EEG, then model order can still be determined by the Wald test.

A prerequisite for using the Wald test in the way described
above is that a good estimate of the Cramér-Rao bound (CRB)
of the parameters is available, even for approximate models. It
has been shown before (e.g., [23], [24]) that using the Hessian
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matrix in least squares (LS), or the Fisher information matrix
in maximum likelihood (ML), is inappropriate if the model is
approximate. This means that the CRB as described in [25] is
not appropriate if, for example, the assumed number of shells in
EEG is incorrect. Therefore, a different estimator for the CRB
should be used, the so-called sandwich estimator. The sandwich
estimator is not new (e.g., [26], [27], [28]). The essential differ-
ence between the traditional CRB and the sandwich is that the
latter involves no assumption on the model being correct. The
expression is consequently slightly more involved than the tradi-
tional CRB, but still only contains first-order partial derivatives
of the model. In a study on categorical time series it was found
that the sandwich estimator gives very precise estimates of the
parameter variance in spite of possible modeling errors [29]. In
[30] it was shown that the Wald test using the sandwich estima-
tor is a levelα test (i.e. it rejects the null hypothesis when it
is true with probability not grater thanα, typically 0.05), even
when the model is approximate. This means that some of the
assumptions about the model can be incorrect but that the Wald
test still is a levelα test.

Since the biophysical function in EEG and MEG has both
a nonlinear and a linear part, nonlinear separable least squares
(NSLS) is used to estimate the parameters [31], [32]. In [28]
the asymptotic CRB of all estimated parameters in NSLS is de-
rived, although constraints are not incorporated. Using the Wald
test on amplitudes requires a reparameterization which in turn
requires constraints to render the problem identifiable [12]. For
MEG in a spherically symmetric head model only the tangential
part is measured [2], and so a constraint is required to account
for this. In the present paper, constraints in NSLS are incor-
porated, together with the fact that models are approximations.
This problem is defined forM -estimators, which refers to maxi-
mizing a general function of parameters. An example is Huber’s
function which is designed to minimize the influence of extreme
data points [33].

The paper is organized as follows. First the NSLS method is
briefly described, followed by the reparameterization and incor-
porating the ensuing constraints in the CRB. Then the Wald test
is described, together with some performance properties. Fi-
nally, a numerical example is given, in which EEG data are sim-
ulated and analyzed in terms of the Wald test and standard errors
for the parameters.

II. PARAMETER AND CRB ESTIMATION

Data fromp sensors on independent trialsj = 1, . . . , n are
collected in thep vectorYj with averageȲ = 1

n

∑n
j=1 Yj . A

model for the meanE{Yj} = µ is constructed such that hope-
fully µ = fθ(X), whereθ is a q vector of parameters, andX
denotes the (fixed) sensor locations (orientations). Then

Yj = fθ(X) + rj . (1)

The residualrj contains both modeling error and noiseej . The
noiseej refers to all irrelevant activation (see e.g., [34]) and has
mean zero and covariance matrixΣ. In that case the noise is
said to be colored (i.e. correlated and heteroscedastic). If, on
the other hand,Σ = σ2Ip, whereIp is thep× p identity matrix,
then the noise is white (i.e. uncorrelated and homoscedastic).
The model can be extended to capture more than a single time

sample, where either just the dipole locations are fixed over time
[35] or both the locations and orientations are fixed over time
[36], [37].

Modeling error arises if the true meanµ cannot be attained
with the functionfθ used in the regression for anyθ. A model
for the mean is then said to be approximate or incorrect. This is,
for example, the case if the incorrect number of shells are used
in EEG or if the sensor positions used in the inverse problem are
incorrect. Thenµ 6= fθ for anyθ considered. Consequently, the
residualrj = µ−fθ+ej contains both modeling errorµ−fθ and
noiseej . Note that a rotation or translation of the sensors does
not fall into the category of an approximate model, since then
there exists aθ with a rotated coordinate system or translated
origin such thatµ = fθ. In addition to incorrect assumptions
about the model of the mean, assumptions about the noise char-
acteristics could be incorrect. For instance, the noise could be
assumed white whereas in fact it is colored. In this example the
standard errors derived from the CRB are then usually too small
[12]. In general such incorrect assumptions have a deleterious
effect on the estimate of the CRB and on tests dependent on an
estimate of the CRB, like the Wald test [24].

The source parameters inθ can be obtained by minimizing

Qθ(Y ) = (Ȳ − fθ)′Σ−1(Ȳ − fθ). (2)

For EEG and MEG the biophysical functionfθ can be simplified
by explicitly using the partial linearity of the function, such that
fθ = Gτβ, whereτ are the3d location andβ the3d moment pa-
rameters ofd sources, andθ′ = (τ ′, β′) with q = 6d. In NSLS,
for a givenτ the linear estimatêβ = (G′τΣ−1Gτ )−1G′τΣ−1Ȳ
is used to construct the minimization function [31]

Qτ (Y ) = Ȳ ′Σ−1(Ip − PG)Ȳ , (3)

wherePG = Gτ (G′τΣ−1Gτ )−1G′τΣ−1. Minimizing Qτ with
respect toτ yields the NSLS estimatêτ . If the modelfθ is
incorrect then the estimatêθ will be biased with respect to the
true parameter, that isE{θ̂−θ0} 6= 0. However, there does exist
θ∗ which minimizes the prediction mean squared errorE{Qτ}.
In this caseθ∗ can be interpreted as the LS approximationfθ∗
of the true but unknown functionµ [23].

Let the first-order partial derivativep× q matrix beḟθ = Fθ.
The asymptotic CRB of̂θ is derived in [28]. Ifθ̂ converges in
probability toθ∗, then

√
n(θ̂ − θ∗) has asymptotic covariance

J−1IJ−1 =
(
F ′θΣ

−1Fθ

)−1(
F ′θΣ

−1RΣ−1Fθ

)(
F ′θΣ

−1Fθ

)−1
, (4)

whereR = E{rjr
′
k}, which is zero if the trialsj and k are

unequal since it was assumed that trials are independent. It is
assumed thatfθ has continuous first-order partial derivativesFθ

of full rank atθ∗ and that the linear approximation offθ is suffi-
cient (see for this last point [38, Ch. 4]). The square root of the
diagonal elements of (4) are the standard errors, which are used
to construct confidence intervals.

By noting thatR = (µ− fθ)(µ− fθ)′+Σ, it can be seen that
if fθ = µ, thenR = Σ. The assumption of a correct model is
then seen to lead to the familiar, less involved expression for the
CRB, which is2J−1 = (F ′θΣ

−1Fθ)−1. If, in addition, the noise
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is white,Σ = σ2Ip, then2J−1 = σ2(F ′θFθ)−1. The CRB in
(4) is valid asymptotically even if an approximate model is used
[30], where for example, the sensor positions are incorrect.

In practice neitherΣ nor R are known and have to be esti-
mated in order to obtain an estimate of the CRB. ForΣ an unbi-
ased and asymptotically consistent estimate is (e.g., [12], [39],
[40], [41])

S =
1

n− 1

n∑

j=1

(Yj − Ȳ )(Yj − Ȳ )′, (5)

whenn > p. This is a common and practical choice if the inter-
est is not in noise characteristics. Other estimates of the noise
covariance matrix based on parametric models for the noise co-
variance (e.g., [34], [42]) could also be used, provided they are
consistent forΣ which requires that the model of the noise co-
variance is correct. Using a consistent estimate likeS may pose
a problem in finite samples, because then it may not be very
close toΣ. This is especially problematic in testing hypotheses,
as in the Wald test, since the test will not have the expected dis-
tribution. As will be shown, this problem in the Wald test can
be avoided by using the sandwich estimate. An estimate ofR is
given by

R̂ =
1
n

n∑

j=1

(Yj − fθ̂)(Yj − fθ̂)
′, (6)

whenn > p. This estimate is an extension of the commonly
used version for the case of white noise, i.e.Σ = σ2Ip (see e.g.,
[23], [43]).

From the estimates of the noise covariance above, three es-
timators of the CRB can be constructed: two from the familiar
one2J−1, and one from the sandwichJ−1IJ−1. First of all,
to compute the CRB the estimatêθ is substituted forθ∗. Let
σ̂2 = Qτ̂/(p − q). Then the familiar estimate of the CRB is
2σ̂2J−1, whereS is used instead ofΣ. If either an assumption
for the mean or covariance is incorrect, then this estimate is ex-
pected to perform poorly. This is because eitherσ̂2 is biased or
S is not close toΣ. Let s2 = 1

p(n−1)

∑
j(Yj − Ȳ )′(Yj − Ȳ )

which is the average of the diagonal ofS. Then an alterna-
tive CRB estimate, based on the familiar one, is2s2J−1, where
againS is used. This estimate is expected to be better than the
familiar one because there is no modeling error ins2. There is
still, however, the possibility thatS is not close toΣ. The third
one is the sandwich estimatorJ−1IJ−1 with R̂ and S. The
sandwich estimator is expected to perform well even if both the
model for the mean and noise covariance are incorrect. Asymp-
totically, for the true model, these three estimators are equiva-
lent, and so the finite sample behavior in different situations is
of interest.

III. CRB FOR CONSTRAINED MODELS

If constraints are required, because the modelfθ requires
these or because of identifiability, then the CRB in (4) has to
be modified. Ifθ is not identifiable thenJ is singular [44],
and so the CRB in (4) cannot be estimated. In [45] a method
to incorporate constraints into the CRB is described for max-
imum likelihood. For more general estimation methods (M -

estimators), a slightly different version is required. This ver-
sion is still based on finding simultaneously the Lagrange mul-
tipliers λ and the parametersθ, but assumes continuity of the
function Qθ and of a constraints functioncθ aroundθ∗ in the
form of a Lipschitz condition [33, Th. 5.23]. Letcθ denote
a vector withr constraints, and ther × q matrix ċθ = Cθ

its first-order derivative, and assume thatCθ has full row-rank
r. Furthermore, letJ+ = J + C ′θCθ which is non-singular if
im(Fθ)∩ im(C ′θ) = {0} [44]. Then estimating the parametersθ
under constraintscθ with Lagrange multipliers is done by find-
ing a solution for the set of equations [45]

(
J+ C ′θ
Cθ O

)(
θ̂ − θ∗
λ̂− λ∗

)
=

(
Q̇θ

O

)
,

whereO is a matrix (or vector) of zeros with appropriate dimen-
sions. Under the regularity conditions of theorem 5.23 in [33],
and the assumption that the augmented matrix on the left, de-
noted byJa, is non-singular, the result onM -estimators can be
used. The result is summarized in lemma 1.

Lemma 1. Assume thatCθ has full row-rank, and thatJa is
non-singular. If the regularity conditions of Theorem 5.23 in
[33, p. 53] are satisfied, then

√
n

(
θ̂ − θ∗
λ̂− λ∗

)
=

(
J+ C ′θ
Cθ O

)−1 (√
nQ̇θ

O

)
+ op(1), (7)

whereop(1) denotes a sequence that converges to zero in prob-
ability [33]. The vector

√
nQ̇θ = −2F ′θΣ

−1 1√
n

∑n
j=1 rj , is as-

sumed to be multivariate normal with mean zero and covariance
matrix I = F ′θΣ

−1RΣ−1Fθ. Then, the CRB of
√

n(θ̂ − θ∗) is
J−1

c IJ−1
c with J−1

c = J−1
+ (Iq − C ′θ(CθJ

−1
+ C ′θ)

−1CθJ
−1
+ ). If

the true model is used, then the CRB becomes2J−1
c [45]. The

number of free parameters has to be adjusted accordingly, and
becomesqf = q − r.

A. Application to EMSA

The CRBJ−1
c IJ−1

c can be used for the source parameters
in EMSA. The reparameterization of the model with amplitudes
separated from the moments requires constraints for both EEG
and MEG. Additionally, for MEG in a homogeneous spherical
head model, identifiability constraints need to be imposed to en-
sure that the location is orthogonal to the moment of each source
[2]. The spatio-temporal model with fixed locations [35] or fixed
locations and orientations of the dipoles over time samples [36],
[37] induces no additional constraints.

For both EEG and MEG the reparameterization consists of the
simple transformation such that the moment parameters inβ are
split-up into orientation parameters and an amplitude parameter
for each source. This is done by the transformationβ = Bα,
whereB is 3d × d and block diagonal with in each block the
normalized orientation vectorβn

i = βi/αi for i = 1, . . . , d, and
α contains the amplitudes [15]. The corresponding constraint is
that the norm of the orientation vector of each dipole equals 1,
that is||βn

i || − 1 = 0. If MEG is used then only the tangential
part of the dipole is measured and so it is also required that the
location and orientation vector are orthogonal, that isτ ′iβ

n
i = 0

for each dipole.
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All constraints can be put in the vectorcθ. The Jacobian of
the constraints vector is the matrixCθ. The expressions for the
matricesJ , I, andCθ required for the CRB are given in the
Appendix for EEG and MEG.

IV. WALD TEST

The Wald test determines whetherhθ = 0 for a given k
vector valued function of the parameters. The null hypothesis
for testing isH0 : hθ = 0, and the alternative is denoted by
H1 : hθ 6= 0. By using the delta method (e.g., [33, Ch. 3] it
can be seen that ifhθ is continuous and if the first-order partial
derivativek × q matrix ḣθ = Hθ has full row-rankk, then the
covariance matrix ofhθ isHθDθH

′
θ, whereDθ is the covariance

matrix of θ̂. The Wald test is then defined as [38]

Wθ̂ = nh′
θ̂
(Hθ̂Dθ̂H

′
θ̂
)−1hθ̂. (8)

If Yj are normal, then underH0 the Wald test is asymptotically
χ2

k distributed [38]. Only linear hypotheses of the formhθ =
Uθ = 0 are considered.

Informally, a test is asymptotically consistent if it can distin-
guish between the null and alternative distribution with suffi-
cient data [33]. However, nearly all statistical tests are asymp-
totically consistent, and so it is a necessary but not a sufficient
condition to use a test. To evaluate the performance of a statisti-
cal test, it is more informative to look at alternative hypotheses
that are close to the null hypothesis, since this makes it harder
to distinguish the two [33], [46]. An example is misspecifying
an amplitude parameter of a source by a small amount. The al-
ternative hypothesis is then referred to as a local alternative. A
local alternative for the parameterθ = θ0 + φ0/

√
n, or equiv-

alently, φ0 =
√

n(θ − θ0), for the true valueθ0 underH0, is
defined asH1 : hθ = hθ0+φ0/

√
n 6= 0, written ashφ0 . These

local alternatives are much more difficult to distinguish from the
null hypothesis than other alternatives.

The linear hypothesis is of the formUθ = 0 and so the first-
order derivative iṡhθ = H = U . The local alternative for an
estimatêφ0 =

√
n(θ̂−θ0) is thenhφ̂0

= Uθ0+Uφ̂0/
√

n. Since
Uθ0 = 0 by hypothesis, the Wald test can be rewritten as

Wφ̂0
= φ̂′0U

′(UDφ̂0
U ′)−1Uφ̂0. (9)

The distribution ofWφ̂0
is asymptotically distributed asχ2

k for
local alternatives [46]. This test is in fact on the noncentrality
parameterδφ0 = φ′0U

′(UDφ0U
′)−1Uφ0 of the noncentral dis-

tributionχ2
k(δ).

The power function of the test is defined as the probability that
H0 is rejected at some specified levelα [33]. LetZ beN(0, Ip)
distributed,Ω1/2 the Cholesky factor ofUDφU ′, andKα the
quantile of the appropriate distribution determined at levelα.
Then the power function is

Pφ̂(Wφ̂ > Kα) → 1− Pφ(||Z + Ω−1/2Uφ||2 ≤ Kα), (10)

asn → ∞. A test is asymptotically a levelα test if the proba-
bility that H0 is rejected given thatH0 is true is at mostα. If, in
addition, the test rejectsH0 whenH1 is true with probability 1,
called the power of the test, then it is asymptotically consistent
[47]. The Wald test can be seen to be asymptotically consis-
tent, because forφ0 underH0, 1 − Pφ0(||Z + Ω−1/2Uφ0||2 ≤

Kα) ≤ α, and for alternativesφ∗ =
√

n(θ − θ∗) underH1,
1 − Pφ∗(||Z + Ω−1/2Uφ∗||2 ≤ Kα) → 1. As said before,
most statistical tests are asymptotically consistent, and so local
alternatives should be considered.

From the power function it can be seen that ifφ is close to
0, then the test is a levelα test. On the other hand ifφ is not
close to 0, then the power tends to 1. The aim is then to find
out for which convergence rates ofφ̂ =

√
n(θ̂ − θ0) the power

function does not go to either 0 or 1. If̂φ has the asymptotic
representation as in (7) from lemma 1, thenθ̂ − θ0 converges
to zero at rateO(n−1/2). For estimators that converge to zero
at this rate, the power is strictly betweenα and 1 [33]. Such a
test is called asymptotically unbiased if it is also asymptotically
a levelα test. This means that the Wald test has higher power
than several other levelα tests, which do not share this property,
for hypotheses that are difficult to distinguish. It is clearly seen
from in the power function, thatΩ−1/2, which includes both the
parameter and noise covariance matrix, directly influences the
power of a test. So the power for local alternatives depends both
on the estimate of the CRB and of the noise covariance matrix.

In practice only finite samples are available and so the Wald
test might be adjusted to incorporate the distribution of the es-
timates involved. As described in the previous section, if all
assumptions on the model are correct andH0 is true, the matrix
Dθ can be either2σ̂2J−1

c or 2s2J−1
c . The distributions of both

σ̂2 ands2 are known to beχ2
n−qf

andχ2
n−p respectively, when

H0 is true [38]. Then the Wald test can be written as a ratio of
two independent chi-square distributions, which isF -distributed
if the degrees of freedom are incorporated. The result is sum-
marized in the following proposition, which is a small extension
of the results in [38, p. 231].

Proposition 2. Let Yj beN(µ, Σ) andH0 : Uθ = 0 is true.
Then for knownΣ

(i) Wθ̂(2σ̂2J−1
c ) =

θ̂′U ′(UJ−1
c U ′)−1Uθ̂

2kσ̂2
∼ Fk,p−qf

(ii) Wθ̂(2s2J−1
c ) =

θ̂′U ′(UJ−1
c U ′)−1Uθ̂

2ks2
∼ Fk,n−p.

This still is not optimal, sinceS is not taken into account, but
should be more accurate than theχ2

k distribution. If not all as-
sumptions are satisfied butH0 : Uθ = 0 is true, thenDθ should
beJ−1

c IJ−1
c . In that case White has shown [30] that only the

Wald test with the sandwichWθ̂(J
−1
c IJ−1

c ) is a levelα test. In
section V Numerical Example, the robustness of these tests is
investigated for several incorrect assumptions.

A. Application to EMSA

The above results are used in the following to define two dif-
ferent Wald tests for EMSA [21]. The first test is on source
amplitudes. If a source has small amplitude, then it can be con-
sidered inactive. The second is a test on the (Euclidean) distance
between paired sources. If the distance between two sources is
very small, then they can be better modeled by one source.

For the Wald test on source amplitudes (denoted byWα), the
linear hypothesis isU = (Od,6d, Id), whereOd,6d denotes a
matrix with zeros of dimensionsd × 6d. This givesUθ = α
the source amplitudes and the covarianceUDθU

′ = Dα for the
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Fig. 1. Left: The sensors and schematic representation of the radii. Right: The
61 sensor configuration in its original form (solid dots) and the perturbed
sensor configuration (open circles).

amplitudes. If (i) is used from proposition 2, thenWα is dis-
tributed asFd,p−qf

. The testWα is an omnibus test in the sense
that it determines whether any of the sources is active. Subse-
quent univariate tests can be performed to see whether each of
the sources individually is active. A univariate test with estima-
tor (i) is distributed asF1,p−qf

.
For the Wald test on the distance between the sources (de-

noted byWτ ), it has to be considered which pairs are tested.
If H0 is true then the distances between the sources is zero.
And so only all comparisons of one source with each of the
others is required. For example, if three sources are tested,
and H0 is true, thenτ1 − τ2 = 0 and τ1 − τ3 = 0, and so
τ2 − τ3 = τ1 − τ3 and it was seen that this is zero. For the
d− 1 comparisons with the first source, the linear hypothesis is
U = (1d−1⊗I3,−I3(d−1)). With estimator (i) from proposition
2, Wτ is distributed asF3(d−1),p−qf

. As before,Wτ is an om-
nibus test, and determines whether any or a linear combination
of source pairs has large distance. Subsequent semi-univariate
tests on source pairs individually can be performed to see which
source pairs are distant. A semi-univariate test on a source pair
with estimator (i) is distributed asF3,p−qf

.
Both tests can be used for GOF and model order selection.

The GOF is given by the omnibus test, which indicates by a
non-significant test result that the model fits. Model order selec-
tion can be performed by repeatedly using the univariate Wald
tests. If the univariate Wald test is significant for each of the
sources, then a model with an additional source can be tested
for significance. The model with the fewest sources for which
the univariate Wald tests still indicate significance, is finally se-
lected.

V. NUMERICAL EXAMPLE

In the numerical example several of the above results are il-
lustrated. First, the differences of the three estimators of the
CRB is examined for different sample sizes and for correct and
incorrect model assumptions. Next, it is shown for the three dif-
ferent CRB estimators whether the null distribution of the Wald
test in porposition 2 is accurate for different sample sizes. Sub-
sequently, it is determined whether the Wald test is a levelα test.
And lastly, the power of the Wald test is investigated by using
local alternatives.

EEG data are generated by two dipoles in a spherical head

model with three isotropic and concentric shells on 61 sensors
(see Fig. 1). The radii are for the brain, skull, and skin are re-
spectively 0.87, 0.92, and 1 [48], and the corresponding conduc-
tivities are 1, 0.80, and 1(Ωm)−1. So-called Berg-parameters
were estimated to approximate the three shell EEG truncated
series (to 70 terms) with the above mentioned radii and conduc-
tivities [49], [50]. The dipoles have locations(0,±0.4, 0.7) with
eccentricity 0.81, both with orientation(1, 0, 0) and amplitude
1.

Noise distributed asN(0,Σ) is added to the sensors. The
matrix Σ is defined asσij = exp(−dij/a) wheredij is the
Euclidean distance between sensors anda is a correlation pa-
rameter set to0.8. The noise variance for the mean was set
at 10% of the maximum output of the dipole modelfθ. Three
interesting noise conditions are possible: noise is generated as
ej ∼ N(0, σ2Ip) and estimation witĥΣ = s2Ip, noise is gen-
erated asej ∼ N(0, Σ) and estimation witĥΣ = S, and fi-
nally, noise is generated asej ∼ N(0, Σ) and estimation with
Σ̂ = s2Ip, as if the noise were white.

To show what happens when an assumption in the biophysi-
cal model is incorrect, either the sensors positions are perturbed
or a one shell head model is used instead of the three-shell head
model. For the sensor perturbation a small amount of uniformly
distributed noise (between−0.02 and0.02) is added to the sen-
sor positions. The data are generated with the perturbed sensor
configuration and are estimated with the original version (Fig. 1,
right). Both assuming incorrect sensor positions and an incor-
rect number of shells introduce a small bias in the source param-
eter estimates, and it is investigated to what extent it affects the
CRB estimators and Wald tests.

A. CRB estimators

To examine the difference between the estimators of the CRB,
several situations are considered. The modelfθ can be correct
or incorrect (correct or perturbed sensor configuration, or three
or one shell head model) and the statistical assumptions on the
noise covariance matrix can be correct or incorrect (estimated
noise covariance is the same as generated or not). To show the
performance of the estimators, the ratio of estimated to the true
standard errors (se) averaged over all source parameters is used,
which should be 1. The true standard errors are defined as the
standard deviation of the estimates of 100 simulations.

In Fig. 2 it can be seen in the left panel that if all model as-
sumptions are correct then the CRB estimates of all three dif-
ferent estimators are approximately equal and asymptotically
correct (close to 1). To investigate the effect of the size of the
modeling error on the CRB estimate, the skull conductivity pa-
rameter is varied such that a difference between the true en in-
correct one is between 0.05 and 0.20. This is shown in the right
panel of Fig. 2. It can be seen that the sandwich estimate is
closest to 1 and that the other two decrease more rapidly as the
size of the difference increases. If the number of trials is in-
creased, then the sandwich CRB estimate gets closer to 1. The
left panel of Fig. 3 shows that the noise covariance estimateS
determines the accuracy of the CRB estimates. AsS converges
to Σ with increasingn, the CRB estimates slowly tend to 1.
If ej ∼ N(0, Σ), Σ̂ = s2Ip, right panel, then only the sand-
wich estimator is close to 1, and is not deteriorated byS. Since
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Fig. 2. The ratio of se averaged over all parameters forJ−1
c IJ−1

c (−), 2σ̂2J−1
c

(· · · ), and2s2J−1
c (−−) and withn = 100. The line (·−·) is at the correct

ratio 1. Left: correct head model andej ∼ N(0, σ2Ip), Σ̂ = s2Ip. Right:
ratio se as a function of conductivity difference andej ∼ N(0, Σ), Σ̂ =
s2Ip.
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Fig. 3. Similar as in Fig. 2 but for perturbed sensor positions. Left:ej ∼
N(0, Σ), Σ̂ = S. Right: ej ∼ N(0, Σ), Σ̂ = s2Ip.

the sandwich CRB estimate remains fairly stable for a range of
modeling error of the conductivity and is similar to the error in
the CRB obtained with the perturbation of the sensor positions,
only the latter misspecification is shown in the remainder of the
paper.

B. Wald test

To examine whether the theoretically assumed distribution of
the Wald test corresponds to the empirical distribution, both a
cumulative distribution function (CDF) and a quantile-quantile
(q-q) plot are used. The first gives the overall correspondence of
the distribution functions and the latter gives more precise infor-
mation on correspondence at the specific quantiles. Information
on large quantiles (tail behavior) is important for the level of
the test. This is shown for the Wald test on source amplitudes,
but similar results have been obtained with the test on source
location.

When all assumptions are satisfied the correspondence be-
tween the theoretical and empirical distribution is high, which
confirms proposition 2. In Fig. 4 it can be seen that when the
senor positions are incorrect and the noise covariance is incor-
rectly assumed white, the empirical distribution follows the the-
oretical one reasonably well withWα(J−1

c IJ−1
c ) for n = 100,

but not well in the tails. This is confirmed by the q-q plot. How-
ever, Fig. 5 shows that for the same situationWα(2σ̂2J−1

c ) does
not come close to the assumed distribution, especially in the tails
(see the q-q plot).

No significant difference was found in any of the conditions
between using theχ2 andF distribution for the Wald tests. This
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Fig. 4. Left: The empirical CDF (−) of Wα(J−1
c IJ−1

c ) and the theoretical
CDF (−−) for n = 100, ej ∼ N(0, Σ), Σ̂ = s2I, and the perturbed
sensor configuration. Right: A q-q plot of the empirical (· · · ) and theoretical
CDF (−−).

0 5 10 20 30
0.

2
0.

4
0.

6
0.

8
1.

0

wa

C
D

F

0 1 2 3

0
5

10
20

30

theoretical quantiles

em
pi

ric
al

 q
ua

nt
ile

s

Fig. 5. Same as in Fig. 4 for the testWα(2σ̂2J−1
c ), n = 100, andej ∼

N(0, Σ), Σ̂ = σ2Ip.

is becauseS is not accounted for, and with the current param-
etersn = 100 trials are sufficient for accurate estimation ofs2

andσ̂2.
To determine whether theWα is a levelα test, the probability

of rejecting the null hypothesis when it is true, which should be
at mostα, is computed as described in the previous section. In
this exampleα = 0.05, as is commonly done [47].

For white noiseWα is a levelα test for all trial conditions and
the correct sensor positions. However, as can be seen in Fig. 6
left panel, when the noise is colored andS is used, then all tests
have elevated levels up ton = 300 trials. For largen (asymptot-
ically) all three tests are levelα tests. If the white noise assump-
tion is incorrect, then the right panel of the same figure shows
that onlyWα(J−1

c IJ−1
c ) is a levelα test. When the sensor posi-

tions are incorrect, the left panel of Fig. 7 shows slightly higher
levels when the noise is colored compared to when the sensor
positions are correct. It is clear that the inaccuracies inS over-
shadow the effects of modeling error from the perturbed sensor
positions. The combination of perturbed sensor positions and
the incorrect assumption of white noise, right panel of Fig. 7, re-
sults in highly elevated levels except forWα(J−1

c IJ−1
c ), which

remains around the correct level of 0.05.
To study the power ofWα with local alternatives, a hypothe-

sis is used that is close to the null hypothesis (local alternative).
In the simulations the null hypothesis corresponds to the source
amplitudes of 1. A local alternative would be for example source
amplitudes of 0.95 or 0.90. Then the probability is investigated
that the null hypothesis is rejected whenH1 is true but quite
close toH0. All power calculations are performed withn = 100
trials to get realistic results. When the noise is white, the power
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Fig. 6. Level of Wα(J−1

c IJ−1
c ) (−), Wα(2σ̂2J−1

c ) (· · · ), and
Wα(2s2J−1

c ) (−−) for the correct sensor positions. The line (· − ·) is
at 0.05, the correct level of the test. Left:ej ∼ N(0, Σ), Σ̂ = S. Right:
ej ∼ N(0, Σ), Σ̂ = s2Ip.

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

trials

le
ve

l

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

trials

le
ve

l

Fig. 7. Same as in Fig. 6 but with with perturbed sensor postitions.

of the three tests is nearly identical. Comparing the correct and
incorrect sensor positions, Fig. 8 and 9 respectively, with the
correct and incorrect noise assumption, left and right panel re-
spectively, shows a similar pattern: when the noise is colored
Wα(J−1

c IJ−1
c ) has the highest power, thenWα(2σ2J−1

c ), and
finally Wα(2s2J−1

c ); the order is reversed when the noise is in-
correctly assumed to be white. The power of the univariate tests
in Fig. 10, show thatWα(J−1

c IJ−1
c ), the only levelα test, has

relatively little power when the noise is incorrectly assumed to
be white (right panel).

VI. CONCLUSION

It was shown for which class of estimators the Wald test is
optimal in the sense that it is asymptotically unbiased (i.e. it is a
levelα test and has power larger than or equal toα). Two differ-
ent Wald tests were defined for GOF and model order selection
purposes in EMSA: a test on source amplitudes and a test on
pairwise source distance. From the simulations the Wald test
appears to be a good test to perform both GOF and model or-
der selection. The multivariate test with the sandwich estimator
is asymptotically unbiased even though with modeling error for
the mean and noise the distribution did not fit well for a small
number of trials. The power of the multivariate test for local
alternatives was quite reasonable when either the correct or in-
correct model for the mean and noise was used. However, the
univariate test had little power for local alternatives when both
the model for the mean and noise were incorrect. This means
that low amplitude sources are more difficult to detect when both
mean and noise assumptions are not satisfied.

A prerequisite for using the Wald test with an incorrect model
for the mean and noise, was that good CRB estimates exist. It
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c ) (· · · ), and

Wα(2s2J−1
c ) (−−) for the correct sensor positions andn = 100. The line

(· − ·) is at 0.05. Left:ej ∼ N(0, Σ), Σ̂ = S. Right: ej ∼ N(0, Σ), Σ̂ =
s2Ip.

0.80 0.85 0.90 0.95
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

amplitude (local alternative)

po
w

er

0.80 0.85 0.90 0.95

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

amplitude (local alternative)

po
w

er

Fig. 9. Same as Fig. 8 for the perturbed sensor configuration.

was shown that a good estimate of the CRB can be obtained with
the sandwich estimator. Correct CRB estimates were obtained
even when the assumption on the noise was incorrect. When the
incorrect model for the mean was assumed, the CRB estimators
were reasonable for larger number of trials.

Two types of modeling error for the mean were investigated
for EEG: incorrect sensor positions and incorrect number of
shells. In both cases the Wald test with the sandwich CRB ap-
peared to be robust. Additionally, the size of the error in the
conductivity parameter of the skull appeared to be of little influ-
ence on the sandwich CRB. Larger modeling errors or a com-
bination of several (interacting) modeling errors require further
investigation.

APPENDIX

The model isfθ = GτBα, with B = (diag(α)−1Id ⊗
1′3)diag(β), α contains thed amplitudes,⊗ is the Kronecker
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Fig. 10. Same as Fig. 8 for univariate tests and the perturbed sensor configura-
tion.
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product,13 = (1, 1, 1)′, and diag(·) constructs a diagonal ma-
trix of a vector. The vector of the reparameterized dipole pa-
rameters isθ′ = (τ ′, (βn)′, α′). The matricesJ = F ′θΣ

−1Fθ,
I = F ′θΣ

−1RΣ−1Fθ, andCθ = ċθ are given in terms of the
reparameterization.

Let the first-order partial derivativeṡfθ = Fθ with respect to
τ , βn, andα be, respectively,Ġτ = (α′B′ ⊗ Σ−1/2Gτ )∂Gτ ,
Ḃ = (α′ ⊗ Σ−1/2Gτ )∂B, andΣ−1/2GτB, where∂A(φ) =
∂vec(A)/∂φ [44]. Then

J =




Jτ Jτβ Jτα

Jβτ Jβ Jβα

Jατ Jαβ Jα


 , I =




Iτ Iτβ Iτα

Iβτ Iβ Iβα

Iατ Iαβ Iα




with

Jτ = Ġ′τ (Bαα′B′ ⊗ Σ−1)Ġτ , Jβ = Ḃ′(αα′ ⊗G′τΣ−1Gτ )Ḃ

Jα = B′G′τΣ−1GτB, Jτβ = Ġ′τ (Bαα′ ⊗ Σ−1Gτ )Ḃ

Jτα = Ġ′τ (Bα⊗ Σ−1Gτ )B, Jβα = Ḃ′(α⊗G′τΣ−1Gτ )B

and

Iτ = Ġ′τ (Bα⊗ Σ−1)R(αB′ ⊗ Σ−1)Ġτ

Iα = B′G′τΣ−1RΣ−1GτB,

Iβ = Ḃ′(α⊗G′τΣ−1)R(α′ ⊗ Σ−1Gτ )Ḃ

Iτβ = Ġ′τ (Bα⊗ Σ−1)R(α′ ⊗ Σ−1Gτ )Ḃ

Iτα = Ġ′τ (Bα⊗ Σ−1)RΣ−1GτB

Iβα = Ḃ′(α⊗GτΣ−1)RΣ−1GτB.

Two cases for the constraint matrixCθ are given: EEG and
MEG. For EEG thed × 7d matrix with the partial derivatives
of the constraints for the reparameterization is

Cθ =
(
O B′ O

)
,

For MEG the additional constraint of orthogonality between lo-
cation and orientation is introduced. This leads to the2d × 7d
matrix

Cθ =
(

B′ U(τ) O
O B′ O

)
,

whereU(τ) = (diag(1/ψ)Id ⊗ 1′3)diag(τ), whereψ contains
the eccentricities ofd sources.
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