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The Wald test and Craen-Rao Bound for
misspecified models in electromagnetic source
analysis

Lourens J. Waldorp, Hilde M. Huizenga, Raoul P.P.P. Grasman

Abstract—By using signal processing techniques an estimate can be ob-accuracy of the dipole parameters greatly [12].

tained of activity in the brain from the electro- or magneto-encephalogram Even if some of the assumptions like the number of shells in
(EEG or MEG). For a proper analysis, a test is required to indicate whether . ; . .

the model for brain activity fits. A problem in using such tests is that oten EEG may be incorrect, it can still be of interest to know how
not all assumptions are satisfied, like the assumption of the number of shells many sources are present (model order). Many methods to de-
in EEG. In such a case a test on the number of sources (model order) might tect sources and methods to determine the model order exist.
still be of interest. A detailed analysis is presented of the Wald test for these .. . .
cases. One of the advantages of the Wald test is that it can be used WhenThese methods vary from purely statistical based techmques like
not all assumptions are satisfied. Two different, previously suggested Wald the residual variance [9], or sequential tests based on singular
tests in ele(i_trocrj'nagnec;ic source ﬁnal?/sis (EMS?) are examinerr; a V&elsotl Onyalue decompositions [13], or multivariate testing [14] to signal
source amplitudes and a test on the closeness of source pairs. The Wald tes . . : ; -

is analytically studied in terms of alternative hypotheses that are close to the brocessmg techniques like MUSIC [15], [16], and to biophysical
null hypothesis (local alternatives). It is shown that the Wald test is asymp- Model based approaches [17], [18]. However, these methods do

totically unbiased, that is has the correct level and power, which makes not explicitly incorporate the fact that some of the assumptions
it appropriate to use in EMSA. An accurate estimate of the Cranér-Rao could be incorrect

bound (CRB) is required for the use of the Wald test when not all assump- ) ) )
tions are satisfied. The sandwich CRB is used for this purpose. Itis defined  In the present paper, the notion of an approximate (incorrect)
for non-separable least squares with constraints required for the Wald test model used in the statistical analysis is made precise and is used
on amplitudes and MEG. Simulations with EEG show that when the sensor : _ffi _
positions are incorrect, or the number of shells is incorrect, or the conduc- t,o determine a proper gOOd,ness offit (GOF) and mgdel selec
tivity parameter is incorrect, then the CRB and Wald test are still good, tion test. A GOF test determines whether the model fits the data
with a moderate number of trials. Additionally, the CRB and Wald test or not, and a model selection test compares different models,
appear robust against an incorrect assumption on the noise covariance. A for instance. two models with different number of sources. The
combination of incorrect sensor positions and noise covariance does affect ' . ’ .
the possibility of detecting a source with small amplitude. Wald test seems WE|| suited for both these.purposes.because it
Keywords— Source localization, separable least squares, approximate {€StS parameters directly and has aSYm_ptonca”y relanvel)_/ large
model, model checking, parameter covariance, constrained optimization, power for hypotheses that are very 'similar’ (local alternatives).
Fisher-information with constraints The Wald test has been used before in similar settings [19], [20].
Two Wald tests are used in the context of EMSA, which have

[. INTRODUCTION been suggested in [21] for a single time sample, and in [22] for

N electromagnetic source analysis (EMSA) an estimate @$patio-temporal model. The firstis a test on source amplitudes.

obtained of the activity in the brain from the electro- of e ideais that if a source has (nearly) zero amplitude it should
magneto-encephaolgram (EEG or MEG) measured at or near#geconsidered as_inactive_. The other is a test on source 'close-
scalp [1]. The inverse problem in which an estimate is obtain8§ss - If the (Euclidean) distance between two sources is small,
relies on many assumptions [2], [3]. Some examples in gghen it might be too difficult to distinguish them and they could
are the number of shells [4], their conductivities [5], [6], theiP€ better modeled as one.
shapes, the type of source (i.e. a dipole or quadrupole etc., seBoth Wald tests proved to be useful when used as a model
e.g., [7], [8]), and the number of sources (see [9] when dipoleslection test to determine model order (i.e. the number of
are used). sources). In [22] the Wald tests were compared for the spatio-

A model comprised of several such assumptions is only tgmporal model to the Akaike and Bayesian information criteria
approximation of what is really going on. In [7] it is shown thafAIC and BIC), and the residual variance. Both the AIC and
dipoles are a good approximation of extended sources, but in {9 Wald tests performed well, but the Wald tests have several
and [10, Ch. 3] it is shown that using the incorrect number afivantages over the AIC: (1) the Wald tests indicate whether a
dipoles can have serious effects on localization. Also in [11] it sodel fits (GOF), whereas the AIC can only compare models,
shown that the distance between the brain and skull has a laf@eeach dipole can be tested, with the Wald test on amplitudes,
effect on sensitivity of both EEG and MEG. In addition, statistito determine at which time samplesiit s active, and finally (3) the
cal assumptions, like the distribution of the noise, can affect tMéald tests can be used even if not all assumptions are satisfied.

For example, if the sensor positions are incorrectly measured in

*Lourens J. Waldorp is both with the Department of Psychology, Universi ; ;
of Amsterdam, Roetersstraat 15, 1018 WB, Amsterdam, and with the Depgtl—EG’ then model order can still be determined by the Wald test.

ment of Neurocognition, Maastricht University, Maastricht, The Netherlands, A prerequisite for using the Wald test in the way described

email: waldorp@psy.uva.nl. The Netherlands Organization for Scientific R. i ; £
search (NWO) is gratefully acknowledged for funding this project. &bove is that a good estimate of the C&rRao bound (CRB)

H.M. Huizenga, and R.P.P.P. Grasman are with the Department of Psychol&]fy,the parameters Is available, even for approxmate mOdels'_ It
University of Amsterdam, Amsterdam, The Netherlands has been shown before (e.g., [23], [24]) that using the Hessian



IEEE TRANSACTIONS ON SIGNAL PROCESSING 2

matrix in least squares (LS), or the Fisher information matrsample, where either just the dipole locations are fixed over time
in maximum likelihood (ML), is inappropriate if the model is[35] or both the locations and orientations are fixed over time
approximate. This means that the CRB as described in [25]86], [37].
not appropriate if, for example, the assumed number of shells ilModeling error arises if the true meancannot be attained
EEG is incorrect. Therefore, a different estimator for the CR®Bith the functionfy used in the regression for afly A model
should be used, the so-called sandwich estimator. The sandwimtthe mean is then said to be approximate or incorrect. This is,
estimator is not new (e.qg., [26], [27], [28]). The essential diffefor example, the case if the incorrect number of shells are used
ence between the traditional CRB and the sandwich is that the&EEG or if the sensor positions used in the inverse problem are
latter involves no assumption on the model being correct. Theorrect. Thenu # fy for any considered. Consequently, the
expression is consequently slightly more involved than the tradgésidual-; = p.— fy+e¢; contains both modeling errgr— fy and
tional CRB, but still only contains first-order partial derivativesioisee;. Note that a rotation or translation of the sensors does
of the model. In a study on categorical time series it was foumat fall into the category of an approximate model, since then
that the sandwich estimator gives very precise estimates of there exists & with a rotated coordinate system or translated
parameter variance in spite of possible modeling errors [29]. dnigin such that. = fy. In addition to incorrect assumptions
[30] it was shown that the Wald test using the sandwich estimabout the model of the mean, assumptions about the noise char-
tor is a levela test (i.e. it rejects the null hypothesis when iacteristics could be incorrect. For instance, the noise could be
is true with probability not grater tham, typically 0.05), even assumed white whereas in fact it is colored. In this example the
when the model is approximate. This means that some of #tandard errors derived from the CRB are then usually too small
assumptions about the model can be incorrect but that the WEIA]. In general such incorrect assumptions have a deleterious
test still is a level test. effect on the estimate of the CRB and on tests dependent on an
Since the biophysical function in EEG and MEG has botbstimate of the CRB, like the Wald test [24].
a nonlinear and a linear part, nonlinear separable least squarekhe source parametersércan be obtained by minimizing
(NSLS) is used to estimate the parameters [31], [32]. In [28] _ _
the asymptotic CRB of all estimated parameters in NSLS is de- Qo(Y) = (Y — fo)) S (Y — fo). 2)
rived, although constraints are not incorporated. Using the Wald . . . N
test on amplitudes requires a reparameterization which in t ' EEQ.and MEG the b|ophy3|cal _functlgf@ can b_e simplified
requires constraints to render the problem identifiable [12]. explicitly using the partial Ime:_;lrlty of the function, such that
MEG in a spherically symmetric head model only the tangentig — G, wherer are the3/d Ioca/t|or) angﬁ’ the3d moment pa-
part is measured [2], and so a constraint is required to acco[ﬁ{petgrs otl sour-ces, and. - (f ') with ql - 6d'1 In NSI;?’
for this. In the present paper, constraints in NSLS are incdPr @ givent the linear estimatg = (7 X~ G-) " GIE7Y
porated, together with the fact that models are approximatioffsused to construct the minimization function [31]
This problem is defined fak/-estimators, which refers to maxi- o1 =
mizing a general function of parameters. An example is Huber’s Q- (V) =Y'E (L, - Po)Y, )
function which is designed to minimize the influence of extremgnere p, — G,(G'Y1G,)~1G. 1. Minimizing Q. with

data points [33]. . _ respect tor yields the NSLS estimaté. If the model f; is
The paper is organized as follows. First the NSLS methodifg:orrect then the estimatewill be biased with respect to the

briefly described, followed by the reparameterization and incqfye parameter, that {6 — 6y} # 0. However, there does exist

porating the ensuing constraints in the CRB. Then the Wald tgSt,yhich minimizes the prediction mean squared errdr). }.

is described, together with some performance properties. [f{-this cased, can be interpreted as the LS approximatjn
nally, a numerical example is given, in which EEG data are singt the true but unknown function [23].

ulated and analyzed in terms of the Wald test and standard errorget the first-order partial derivative x ¢ matrix bef, = Fj.

for the parameters. The asymptotic CRB of is derived in [28]. If§ converges in

Il. PARAMETER AND CRB ESTIMATION probability tof,, then\/ﬁ(é — 0.) has asymptotic covariance

Data fromp sensors on independent trigls= 1,...,n are J gt =
collected in thep vectorY; with averageY” = > | V;. A
model for the mea’{Y;} = p is constructed such that hope-
fully p = fp(X), whered is aq vector of parameters, anl  \yhere R = E{r;r;.}, which is zero if the trialsi and k are
denotes the (fixed) sensor locations (orientations). Then  nequal since it was assumed that trials are independent. It is

Y, = fo(X) +1;. (1) assumed thafy has continuogs first—order_parti.al der!vati\lé?s

of full rank até,. and that the linear approximation éf is suffi-

The residual-; contains both modeling error and noise The cient (see for this last point [38, Ch. 4]). The square root of the
noisee; refers to all irrelevant activation (see e.g., [34]) and haagonal elements of (4) are the standard errors, which are used
mean zero and covariance matbix In that case the noise isto construct confidence intervals.
said to be colored (i.e. correlated and heteroscedastic). If, orBy noting thatR = (u— fo)( — fo)' + %, it can be seen that
the other handy. = o1, wherel,, is thep x p identity matrix, if fo = p, thenR = X. The assumption of a correct model is
then the noise is white (i.e. uncorrelated and homoscedastthen seen to lead to the familiar, less involved expression for the
The model can be extended to capture more than a single ti€RB, which is2J~! = (F;$ 7' F,)~'. If, in addition, the noise

(>~ R) (B RS R) (R ) ' (4)
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is white, = = oI, then2J ! = o?(F}F,)~!. The CRB in estimators), a slightly different version is required. This ver-
(4) is valid asymptotically even if an approximate model is usegion is still based on finding simultaneously the Lagrange mul-
[30], where for example, the sensor positions are incorrect. tipliers A and the parameteis but assumes continuity of the
In practice neithe® nor R are known and have to be estifunction @y and of a constraints functiory aroundd, in the
mated in order to obtain an estimate of the CRB. E@n unbi- form of a Lipschitz condition [33, Th. 5.23]. Lefy denote
ased and asymptotically consistent estimate is (e.g., [12], [38]vector withr constraints, and the x ¢ matrix ¢y = Cy
[40], [41)]) its first-order derivative, and assume tliat has full row-rank
N r. Furthermore, let/y = J + C}Cy which is non-singular if
Z(Yi — Y)Y, - YY), (5) im(Fp) Nim(Cj) = {0} [44]. Then estimating the parametérs

under constraintsy with Lagrange multipliers is done by find-
ing a solution for the set of equations [45]
whenn > p. This is a common and practical choice if the inter- A
est is not in noise characteristics. Other estimates of the noise (J+ Cé) ( - ) <Q9)
covariance matrix based on parametric models for the noise co- Co O)\N—2) 0)’
variance (e.g., [34], [42]) could also be used, provided they are
consistent for> which requires that the model of the noise covhereO is a matrix (or vector) of zeros with appropriate dimen-
variance is correct. Using a consistent estimate fikmay pose sions. Under the regularity conditions of theorem 5.23 in [33],
a problem in finite samples, because then it may not be ve¥jd the assumption that the augmented matrix on the left, de-
close toX. This is especially problematic in testing hypotheseBoted by.J,, is non-singular, the result ol -estimators can be
as in the Wald test, since the test will not have the expected dised. The result is summarized in lemma 1.
tribution. As will be shown, this problem in the Wald test can Lemma 1 Assume thaty has full row-rank, and thaf,, is
be avoided by using the sandwich estimate. An estimafeief non-singular. If the regularity conditions of Theorem 5.23 in

given by [33, p. 53] are satisfied, then
- - 00, I o)\ '
R= 105 10— 1), © vi(i v)=(& %) (Vo) ren. o
j=1

whenn > p. This estimate is an extension of the commoniyhereo,(1) denotes a sequence that converges to zero in prob-

used version for the case of white noise, be= 021, (see e.g., ability [33]. The vecton,/nQy = —2F9’E*1ﬁ > 1T IS as-

[23], [43)). sumed to be multivariate normal with mean zero and covariance
From the estimates of the noise covariance above, three mgtrix I = F;%~'RY.~'F,. Then, the CRB of/n(f — 6.) is

timators of the CRB can be constructed: two from the familiak, ' 1.7 with J; 1 = J 1 (I, — C)(CoJ; Ch) " CoJ 1), If

one2J~ !, and one from the sandwich~'7J~!. First of all, the true model is used, then the CRB becomés! [45]. The

to compute the CRB the estimafieis substituted fo,. Let number of free parameters has to be adjusted accordingly, and

52 = Q;/(p — q). Then the familiar estimate of the CRB isbecomesg; = ¢ — 7.

26271, whereS is used instead of. If either an assumption

for the mean or covariance is incorrect, then this estimate is éx- Application to EMSA

pected to perform poorly. This is because eithéis biased or  The CRB J-'1J; ! can be used for the source parameters
S'is not close to%. Lets® = ;b5 3°,(Y; — Y)'(Y; = Y)  in EMSA. The reparameterization of the model with amplitudes
which is the average of the diagonal 8f Then an alterna- separated from the moments requires constraints for both EEG
tive CRB estimate, based on the familiar one248J~", where and MEG. Additionally, for MEG in a homogeneous spherical
againsS is used. This estimate is expected to be better than thead model, identifiability constraints need to be imposed to en-
familiar one because there is no modeling errosinThere is  sure that the location is orthogonal to the moment of each source
still, however, the possibility thaf is not close ta.. The third [2]. The spatio-temporal model with fixed locations [35] or fixed
one is the sandwich estimatdr'7.J-! with 2 andS. The [ocations and orientations of the dipoles over time samples [36],
sandwich estimator is expected to perform well even if both t87] induces no additional constraints.
model for the mean and noise covariance are incorrect. Asympfor both EEG and MEG the reparameterization consists of the
totically, for the true model, these three estimators are equi¥imple transformation such that the moment parametessaie
lent, and so the finite sample behavior in different situations dplit-up into orientation parameters and an amplitude parameter
of interest. for each source. This is done by the transformatios: Ba,
where B is 3d x d and block diagonal with in each block the
normalized orientation vectgi” = 3;/a; fori =1,...,d, and

If constraints are required, because the maflerequires « contains the amplitudes [15]. The corresponding constraint is
these or because of identifiability, then the CRB in (4) has that the norm of the orientation vector of each dipole equals 1,
be modified. If¢ is not identifiable then/ is singular [44], thatis||5]'|| — 1 = 0. If MEG is used then only the tangential
and so the CRB in (4) cannot be estimated. In [45] a methpdrt of the dipole is measured and so it is also required that the
to incorporate constraints into the CRB is described for malocation and orientation vector are orthogonal, that j§* = 0
imum likelihood. For more general estimation methodsg-( for each dipole.

IIl. CRB FOR CONSTRAINED MODELS
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All constraints can be put in the vectay. The Jacobian of K,) < «, and for alternative®, = /n(6 — 6.) under Hy,
the constraints vector is the matii%. The expressions for the1 — Py, (||Z + Q'/2U¢.||*> < K,) — 1. As said before,
matricesJ, I, and Cy required for the CRB are given in themost statistical tests are asymptotically consistent, and so local

Appendix for EEG and MEG. alternatives should be considered.
From the power function it can be seen thabifs close to
IV. 'WALD TEST 0, then the test is a level test. On the other hand if is not

The Wald test determines whethey = 0 for a givenk close to 0, then the power tends to 1. The aim is then to find
vector valued function of the parameters. The null hypothesist for which convergence rates of= \/n(6 — 6,) the power
for testing isH, : hg = 0, and the alternative is denoted byfunction does not go to either 0 or 1. dfhas the asymptotic
H, : hg # 0. By using the delta method (e.g., [33, Ch. 3] itepresentation as in (7) from lemma 1, thr- 6, converges
can be seen that ify is continuous and if the first-order partialto zero at rateD(n~1/2). For estimators that converge to zero
derivativek x ¢ matrix hy = Hy has full row-rankk, then the at this rate, the power is strictly betweerand 1 [33]. Such a
covariance matrix ohg is Hy Dy H), whereDj is the covariance test is called asymptotically unbiased if it is also asymptotically

matrix of §. The Wald test is then defined as [38] a levela test. This means that the Wald test has higher power
. R than several other level tests, which do not share this property,
Wy = nhé(HéDéHé) hg- (8) for hypotheses that are difficult to distinguish. It is clearly seen

from in the power function, tha2—'/2, which includes both the
2 distributed 1381, Onlv linear hvootheses of the folm —  Parameter and noise covariance matrix, dlregtly influences the
)&’“9 — 0are corEsid]ered Y yp iy power of a test. So the power for local alternatives depends both
' on the estimate of the CRB and of the noise covariance matrix.

Informally, a test is asymptotically consistent if it can distin- | . v fini | e d he Wald
guish between the null and alternative distribution with suffi- '™ Practice only finite samples are available and so the Wa

cient data [33]. However, nearly all statistical tests are asyrriﬁ-;t might be adjusted to inc_:orpo_rate the dis_,trib ution .Of th_e es-
totically consistent, and so it is a necessary but not a sulffici ates |ﬂvolved.hAs dgslcrlbed In the previous sr(]actlon, _'f all
condition to use a test. To evaluate the performance of a Statigﬁ;sumpgons_ ﬁn tASJ”l? € arQechlrrgF:t: H:jﬁ.is Fkr)uel, the r?itn}(]

cal test, it is more informative to look at alternative hypothese can be eithes®J;* or 2s°J,". The distributions of bot

2 2 2 H
that are close to the null hypothesis, since this makes it hardera"ds” aré known to beg;, _, - andy;, _,, respectively, when

to distinguish the two [33], [46]. An example is misspecifyinqyo is true [38]. Then the Wald test can be written as a ratio of
an amplitude parameter of a source by a small amount. The o independent chi-square distributions, which'islistributed

ternative hypothesis is then referred to as a local alternative. Ahg degfees of fregdom are i_n.corporgteoll. The result is sum-
local alternative for the parametér= 6, + o/+/, or equiv- marized in the following proposition, which is a small extension
alently, o = /n(0 — 6y), for the true valuédy under Hy, is of the resg]ts in [38, p. 231]. )
defined sty : hg = hy, 1.4,/ # 0, Written ash,,. These Proposition 2 LetY; be N(u,¥) andH, : U6 = 0 is true.
local alternatives are much more difficult to distinguish from thehen for known
null hypothesis than other alternatives. ATt 1774

The linear hypothesis is of the forti¢ = 0 and so the first- (i) Wz(262J ") = GU U)TU8 Fy

If Y; are normal, then undéi, the Wald test is asymptotically

. ~2 P—af
order derivative ishy = H = U. The local alternative for an o 21“10 N 1r1A
estimatepy = v/n(0—6p) isthenh; = Uby+Udo/\/n. Since (i) W,(2s20-1) = oU'(UJU) U0 Fon .
Ub, = 0 by hypothesis, the Wald test can be rewritten as g ¢ 2ks? e
W, = %U’(UDé) U~ Udy. (9) This still is not optimal, sinces' is not taken into account, but
0 0

should be more accurate than thg distribution. If not all as-
The distribution ofi¥; is asymptotically distributed ag; for sumptions are satisfied biif, : U6 = 0 is true, thenDy should
local alternatives [46]. This test is in fact on the noncentralitye /177 !. In that case White has shown [30] that only the
parameteb,, = ¢(U’(UDg,U’) Uy of the noncentral dis- Wald test with the sandwic;(J, ' 1.J1) is a levela test. In
tribution x 2 (9). section V Numerical Example, the robustness of these tests is

The power function of the test is defined as the probability thimvestigated for several incorrect assumptions.

Hy is rejected at some specified leve[33]. Let Z be N (0, 1))
distributed,Q'/? the Cholesky factor ot/ D4U’, and K, the A. Application to EMSA

quantile of the appropriate distribution determined at level  The apove results are used in the following to define two dif-
Then the power function is ferent Wald tests for EMSA [21]. The first test is on source
(T _ —-1/2 2 amplitudes. If a source has small amplitude, then it can be con-
F(Ws > Ka) = 1= Py(1Z+Q77U" < o), (10) sidered inactive. The second is a test on the (Euclidean) distance
asn — oo. Atestis asymptotically a level test if the proba- between paired sources. If the distance between two sources is
bility that Hy is rejected given thall, is true is at mostv. If, in  very small, then they can be better modeled by one source.
addition, the test rejectd, when H, is true with probability 1, For the Wald test on source amplitudes (denotediifyy, the
called the power of the test, then it is asymptotically consistéiniear hypothesis i&/ = (Og64,14), WhereOgq ¢4 denotes a
[47]. The Wald test can be seen to be asymptotically consmatrix with zeros of dimensiong x 6d. This givesUf = «
tent, because fap, underHy, 1 — Py, (||Z + Q™ Y2U¢o||> <  the source amplitudes and the covariatide,U’ = D,, for the
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o a7 S £ $ model with three isotropic and concentric shells on 61 sensors
e (see Fig. 1). The radii are for the brain, skull, and skin are re-
2 o | B % e s spectively 0.87,0.92, and 1 [48], and the corresponding conduc-
o c tivities are 1, 0.80, and (Qm)~!. So-called Berg-parameters
S z ) éea g o §Céa were estimated to approximate the three shell EEG truncated
9 sl °° © series (to 70 terms) with the above mentioned radii and conduc-
' S 1 tivities [49], [50]. The dipoles have locatiofi8, +0.4, 0.7) with
S SR @ e & oW eccentricity 0.81, both with orientatiofi, 0,0) and amplitude
T T T T T T T T T T 1
-1.0 -05 00 05 10 -10 -05 00 05 10 Noise distributed asV(0,Y) is added to the sensors. The
top view front view matrix 3 is defined asr;; = exp(—d;;/a) whered;; is the

, _ , o Euclidean distance between sensors aris a correlation pa-
Fig. 1. Left: The sensors and schematic representation of the radii. Right: T

61 sensor configuration in its original form (solid dots) and the perturbeljé(?‘rIeter set t@.8. _The NOISE variance TOI’ the mean was set
sensor Conﬁguration (Open Circ|es)_ a.t 10% Of the maximum Output Of the d|p0|e mO(f@l Three
interesting noise conditions are possible: noise is generated as
ej ~ N(0,0%I,) and estimation wittt: = 521, noise is gen-
amplitudes. If (i) is used from proposition 2, thé#, is dis- grated ag; ~ N(0,%) and estimation witt: = S, and fi-

tributed asFy; 4, . The testiV’, is an omnibus test in the sensgally, noise is generated as ~ N (0, ) and estimation with
that it determines whether any of the sources is active. Subge-_ 2

L » as if the noise were white.
guent univariate tests can be performed to see whether each qfo show what happens when an assumption in the biophysi-

the sources individually is active. A univariate test with estimas mogel is incorrect, either the sensors positions are perturbed
tor (i) is distributed asy 5. ) or a one shell head model is used instead of the three-shell head
For the Wald test on the distance between the sources (gfsdel. For the sensor perturbation a small amount of uniformly
noted .byWT), it has to b_e considered which pairs are t_QSteQistributed noise (between0.02 and0.02) is added to the sen-
If Hy is true then the distances between the sources is z&Jgr positions. The data are generated with the perturbed sensor
And so only all comparisons of one source with each of thenfiguration and are estimated with the original version (Fig. 1,
others is required. For example, if three sources are testggpny). Both assuming incorrect sensor positions and an incor-
and Hy is true, thenr, — 7 = 0 andr, — 73 = 0, and SO yect number of shells introduce a small bias in the source param-

Ty — 73 = 7 — 73 and it was seen that this is zero. For thgier estimates, and it is investigated to what extent it affects the
d — 1 comparisons with the first source, the linear hypothesisisig estimators and Wald tests.

U= (1g-1®1I3, —I3(4-1)). With estimator (i) from proposition
2, W is distributed a3y 1) ,—q,- As before,IV. is an om- A. CRB estimators

nibus test, and determines whether any or a linear combinatioq.O examine the difference between the estimators of the CRB

of source pairs has large distance. Subsequent semi-univaréz??eral situations are considered. The mgietan be correct

tests on source pairs individually can be performed to see Wh'& .incorrect (correct or perturbed sensor configuration, or three

SOurce pairs are Q|st§nt: A semi-univariate test on a source R3'one shell head model) and the statistical assumptions on the
with estimator (i) is distributed a3 ;, ;-

Both b 4 for GOF and model ord | _noise covariance matrix can be correct or incorrect (estimated
h ot tES,tS can i usr(? or o an mc;feh Qrdgr S€ egt"ﬁ%ise covariance is the same as generated or not). To show the
e GOF is given by the omnibus test, which indicates by g tormance of the estimators, the ratio of estimated to the true

non—significant test result that the model .ﬁts' Mode! °“?'ef seleg: ndard errors (se) averaged over all source parameters is used,
tion car} bﬁ performed by rlezpeatefjly .US'.?.g thefumvarlztefvv ich should be 1. The true standard errors are defined as the
tests. If the univariate Wald test is significant for each of thg,jarq deviation of the estimates of 100 simulations.

sources, then a model with an additional source can be teste Fig. 2 it can be seen in the left panel that if all model as-

for &gmﬂgance. The modgl W'th the fgwe_gt sources for Wh'%hmptions are correct then the CRB estimates of all three dif-
the univariate Wald tests still indicate significance, is finally S@srent estimators are approximately equal and asymptotically
lected. correct (close to 1). To investigate the effect of the size of the
modeling error on the CRB estimate, the skull conductivity pa-
rameter is varied such that a difference between the true en in-
In the numerical example several of the above results aredbrrect one is between 0.05 and 0.20. This is shown in the right
lustrated. First, the differences of the three estimators of thanel of Fig. 2. It can be seen that the sandwich estimate is
CRB is examined for different sample sizes and for correct anfbsest to 1 and that the other two decrease more rapidly as the
incorrect model assumptions. Next, it is shown for the three difize of the difference increases. If the number of trials is in-
ferent CRB estimators whether the null distribution of the Waldctreased, then the sandwich CRB estimate gets closer to 1. The
test in porposition 2 is accurate for different sample sizes. Subft panel of Fig. 3 shows that the noise covariance estirfate
sequently, itis determined whether the Wald test is a levekt. determines the accuracy of the CRB estimatesSA®nverges
And lastly, the power of the Wald test is investigated by using X with increasingn, the CRB estimates slowly tend to 1.
local alternatives. If e; ~ N(O,E),S = s%I,, right panel, then only the sand-
EEG data are generated by two dipoles in a spherical heaidh estimator is close to 1, and is not deterioratedsbyince

V. NUMERICAL EXAMPLE
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Fig. 3. Similar as in Fig. 2 but for perturbed sensor positions. Left:~ N(0,%),3 = 021,.

N(0,%),3 = S. Right.ej ~ N(0,%),3 = s21,,.

is becauseS is not accounted for, and with the current param-

the sandwich CRB estimate remains fairly stable for a range&brsy, = 100 trials are sufficient for accurate estimationsf
modeling error of the conductivity and is similar to the error igng42.
the CRB obtained with the perturbation of the sensor positions, 4 determine whether thé’,, is a levela test, the probability
only the latter misspecification is shown in the remainder of thg rejecting the null hypothesis when it is true, which should be
paper. at mosta, is computed as described in the previous section. In
this examplex = 0.05, as is commonly done [47].

For white noisdV,, is a levelx test for all trial conditions and

To examine whether the theoretically assumed distribution thfe correct sensor positions. However, as can be seen in Fig. 6
the Wald test corresponds to the empirical distribution, bothleft panel, when the noise is colored afids used, then all tests
cumulative distribution function (CDF) and a quantile-quantileave elevated levels up to= 300 trials. For large: (asymptot-
(g-q) plot are used. The first gives the overall correspondencec#lly) all three tests are level tests. If the white noise assump-
the distribution functions and the latter gives more precise infdien is incorrect, then the right panel of the same figure shows
mation on correspondence at the specific quantiles. Informatitiat onlyW,, (J-11J 1) is a leveln test. When the sensor posi-
on large quantiles (tail behavior) is important for the level dfons are incorrect, the left panel of Fig. 7 shows slightly higher
the test. This is shown for the Wald test on source amplitudésyels when the noise is colored compared to when the sensor
but similar results have been obtained with the test on sougesitions are correct. It is clear that the inaccuracieS over-
location. shadow the effects of modeling error from the perturbed sensor

When all assumptions are satisfied the correspondence pesitions. The combination of perturbed sensor positions and
tween the theoretical and empirical distribution is high, whictine incorrect assumption of white noise, right panel of Fig. 7, re-
confirms proposition 2. In Fig. 4 it can be seen that when tiselts in highly elevated levels except fidf, (J11J1), which
senor positions are incorrect and the noise covariance is ina@mains around the correct level of 0.05.
rectly assumed white, the empirical distribution follows the the- To study the power ofV,, with local alternatives, a hypothe-
oretical one reasonably well with,,(J17J 1) for n = 100, sis is used that is close to the null hypothesis (local alternative).
but not well in the tails. This is confirmed by the g-q plot. Hown the simulations the null hypothesis corresponds to the source
ever, Fig. 5 shows that for the same situafitn(252.J 1) does amplitudes of 1. A local alternative would be for example source
not come close to the assumed distribution, especially in the tailaplitudes of 0.95 or 0.90. Then the probability is investigated
(see the g-q plot). that the null hypothesis is rejected whéh is true but quite

No significant difference was found in any of the conditionslose toH. All power calculations are performed with= 100
between using thg? andF distribution for the Wald tests. This trials to get realistic results. When the noise is white, the power

B. Wald test
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of the three tests is nearly identical. Comparing the correct agds shown that a good estimate of the CRB can be obtained with

incorrect sensor positions, Fig. 8 and 9 respectively, with thge sandwich estimator. Correct CRB estimates were obtained

correct and incorrect noise assumption, left and right panel g&ren when the assumption on the noise was incorrect. When the

spectively, shows a similar pattern: when the noise is colorggorrect model for the mean was assumed, the CRB estimators

W (J; 11J; 1) has the highest power, théfl, (20>, "), and \vere reasonable for larger number of trials.

finally W, (2s*J.!); the order is reversed when the noise is in- Tyo types of modeling error for the mean were investigated

correctly assumed to be white. The power of the univariate tegfg EEG: incorrect sensor positions and incorrect number of

in Fig. 10, show thatV, (J; '1J; 1), the only levela test, has shells, In both cases the Wald test with the sandwich CRB ap-

reIatingy Ii_ttle power when the noise is incorrectly assumed feared to be robust. Additionally, the size of the error in the

be white (right panel). conductivity parameter of the skull appeared to be of little influ-

ence on the sandwich CRB. Larger modeling errors or a com-

bination of several (interacting) modeling errors require further
It was shown for which class of estimators the Wald test isvestigation.

optimal in the sense that it is asymptotically unbiased (i.e. itis a

level o test and has power larger than or equal}oTwo differ- APPENDIX

ent Wald tests were defined for GOF and model order selectionthe model isf, = G.Ba, with B = (diagla)'1; ®

purposes in EMSA: a test on source amplitudes and a test@hdiag(3), o contains thel amplitudes,® is the Kronecker
pairwise source distance. From the simulations the Wald test

appears to be a good test to perform both GOF and model or-
der selection. The multivariate test with the sandwich estimator
is asymptotically unbiased even though with modeling error for
the mean and noise the distribution did not fit well for a small
number of trials. The power of the multivariate test for locag
alternatives was quite reasonable when either the correct or in- < |
correct model for the mean and noise was used. However, the § -
univariate test had little power for local alternatives when both I S
the model for the mean and noise were incorrect. This means 0‘80 0;5 0‘90 0‘95 0‘80 0‘85 0‘90 0;5
that low amplitude sources are more difficult to detect when both ' ' ' ' ' ' ' '
mean and noise assumptions are not satisfied. amplitude (local alternative) amplitude (local alternative)

A prerequisite for U_Sing the Wald test with an inForrECt m(_)dﬂg. 10. Same as Fig. 8 for univariate tests and the perturbed sensor configura-
for the mean and noise, was that good CRB estimates exist. Ittion.

VI. CONCLUSION

4 06 08 1.0

power

00 02 04 06 08 10




IEEE TRANSACTIONS ON SIGNAL PROCESSING

product,13 = (1,1,1)’, and diag-) constructs a diagonal ma-[6]
trix of a vector. The vector of the reparameterized dipole pa-
rameters i9 = (7/,(8")’,«’). The matrices] = F;>~'Fy, /]
I = F)S7'RY71Fy, andCy = ¢, are given in terms of the
reparameterization.

Let the first-order partial derivative§ = F, with respect to
T, 7, anda be, respectivelyi, = (o/B’ @ ¥71/2G,)0G,, [9]
B = (o/ ® ¥712G,)dB, and~~/2G . B, wheredA(¢) =
oved A)/0¢ [44]. Then

(8]

[10]
Jr s Jra I, I I
J=\Jsr Js Jsa |, I=|Isr 15 Isa "
Jaq' Jaﬁ Ja Iom’ Iozﬁ Ioz [t
with [12]

J. =G (Bad'B' @ ¥~ HG,,
Jo = B'G'>7'G, B,
Jra = G (Ba® X71G,)B,

Js = B'(ad @ GLX7'G,)B
Jrg =G (Bad @ 271G,)B
Jsa = B'(a® G.X71G,)B

(23]

[14]

and [15]

I, =G (Ba®@ Y HR(aB © ¥ 1G,

I, =BG > 'RY'G, B,

Is=B (a2 G X HR( ©X71G,)B
I =G (Ba® Y YR @ ¥7'G,)B
Lo =G(Ba® Y YRY7'G, B
Igo = B'(a® G, ")RE™'G, B.

[16]
[17]

(18]

Two cases for the constraint matri%, are given: EEG and [19]
MEG. For EEG thed x 7d matrix with the partial derivatives

of the constraints for the reparameterization is [20]

Co=(0 B 0), 21

For MEG the additional constraint of orthogonality between lo-
cation and orientation is introduced. This leads to2te< 7d

matrix
B’ @)
Co = (0 0) )

whereU (1) = (diag(1/+)I; ® 1%)diag(t), wherei contains [24]
the eccentricities of sources.

[22]

U(r)

B 23]
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