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Abstract

The statistical analysis of fMRI time series requires accurate estimates of the vari-
ance. In practice many assumptions required for accurate variance estimation are
violated. For instance, it is generally acknowledged that the model used to ac-
count for temporal autocorrelations or the model for the hemodynamic response
are approximations. As a consequence tests on general linear model coefficients are
not valid. Robust estimation of the variance of the general linear model (GLM)
coefficients in fMRI time series is therefore essential. In this paper an alternative
method to estimate the variance of the GLM coefficients accurately is suggested and
compared to other methods. The alternative, referred to as the sandwich, is based
primarily on the fact that the time series are obtained from multiple exchangeable
stimulus presentations. The analytic results show that the sandwich is unbiased.
Using this result, it is possible to obtain an exact statistic which keeps the 5% false
positive rate. Extensive Monte Carlo simulations show that the sandwich is robust
against misspecification of the autocorrelations and of the hemodynamic response
model. The sandwich is seen to be in many circumstances robust, computation-
ally effecient, and flexible with respect to correlation structures across the brain. In
contrast, the smoothing approach can be robust to a certain extent but only with
specific knowledge of the circumstances for the smoothing parameter.

Key words: robust estimation, false positive rate, neuroimaging statistics,
standard errors, sandwich

1 Introduction

Brain activity maps from functional magnetic resonance imaging (fMRI) time
series are becoming increasingly important in the cognitive sciences [1]. An
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fMRI brain activity map contains thousands of volume elements (voxels) that
make up the entire brain. For each of these voxels a blood-oxygenation level
dependent (BOLD) time series is available. In order to increase the signal to
noise ratio, exchangeable stimuli are repeated several times in experiments
[2]. Since there are many voxels, analyses are often performed voxel-wise to
decrease computational load (mass univariate approach). In the general lin-
ear model (GLM), the time series of each voxel is represented by a linear
combination of modeled time series corresponding to a condition or effect [3].
Amplitude coefficients and their variances are then computed such that hy-
pothesis testing can be performed on (a function of) these coefficients to, for
example, test between conditions. This paper is about estimating the variance
of the amplitude coefficients as accurately as possible such that hypothesis
testing is valid.

Hypothesis tests on functions of parameters are greatly influenced by the
estimate of the variance of the model parameters, which in turn is greatly
influenced by the autocorrelations of the time series [1,4,5]. Generally, two
approaches to estimating the variance of the coefficients can be distinguished:
(i) transforming the data such that the time series becomes uncorrelated or
“white”, and (ii) transforming the data such that the data are smoothed or
“colored”, and then using the known, smooth structure for variance estima-
tion [6,7]. In prewhitening, on the one hand, a model for the autocorrelations
of the time series is used which should render the data uncorrelated [8]. Often
an autoregressive (AR) process is used [9], but many other strategies exist
[10–13]. The advantage of prewhitening is that the obtained variance estimate
is smallest compared to all other unbiased estimates [14]. However, this advan-
tage holds only if the model for the correlation structure is correct [7], which is,
of course, difficult to maintain. It has been suggested that accounting for bias
due to autocorrelations is not required because the estimates did not improve
enough [7]. However, Marchini and Smith [7] did not consider an incorrect
correlation structure, only bias due to limited length of the time series. Pre-
coloring, on the other hand, has the advantage that the assumed correlation
structure need not be correct [4]. A disadvantage is that a smoothing parame-
ter of, for example, a Gaussian kernel needs to be chosen (see e.g., [15]). Such
a decision can influence the quality of the variance estimate [7,13]. Another
disadvantage of the smoothing approach is that high frequency components
in the data can be attenuated [11].

In addition to misspecification of the autocorrelations, the model for the
hemodynamic response is also likely to be incorrect [16]. This means that the
residuals contain misspecification which is carried into the estimator of the
variance of the coefficients. It is therefore important to take such misspecifi-
cation into account in any statistical analysis of fMRI time series.

I agree with Friston et al. [4] that robust variance takes priority over
efficient variance, regardless of whether the model for the correlations is correct
or not. However, optimally a robust variance estimate should also be able
to adapt to local variations of correlation structure. Variation of correlation
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structure exists across different locations of the brain [9]. A variance estimate
like the smoothing approach that works well on average of brain locations
can therefore be improved. I suggest a robust variance estimate based on the
residuals but taking into account the individual replications or events. This
variance estimate adapts to correlational changes, is computationally efficient,
and is robust. I show that this robust variance estimate is unbiased and as a
result can be used for hypothesis testing even with few replications.

The paper is organized as follows. Section 2 introduces the differences be-
tween the true underlying process and the GLM, the working model. This
section also discusses existing methods of estimating the variance of the coef-
ficients and introduces the new, robust variance estimate. Subsequently, hy-
pothesis testing is discussed for the different estimators. In Section 3 extensive
Monte Carlo simulations are discussed to show how the different estimators
perform in different circumstances for blocked and event-related designs.

2 Model specification and misspecification

In model specification a data generating process (DGP) is assumed to exist.
This DGP is in general unknown and is therefore approximated by a working
model. Such an approximation can be misspecified in at least two ways: (i)
the model for the mean can be incorrect, and (ii) the model for the autocor-
relations noise can be incorrect. An example of a misspecified model for the
mean is using a gamma function as a model for the hemodynamic response
when the BOLD response is in fact generated by the balloon model, see e.g.,
[16]. An example of misspecification of the autocorrelations is using an autore-
gressive model for temporal correlations, when the correlations are actually
1/frequency [1]. First, statistical assumptions of the DGP are described fol-
lowed by misspecification of the GLM for fMRI data as a working model.

Data of i = 1, . . . , p time points or scans are available measured on j =
1, . . . , n independent trials or replications. The data are collected in the p-
vector Yj. The DGP for Yj is Yj = gθ(Z) + ej, where gθ(Z) <∞ is an unkown
(non)linear, nonrandom function with fixed regressors Z = (z1, . . . , zm) and
unknown parameters θ. The noise ej has joint distribution function F (e) with
mean zero and unknown variance E{eje′k} = Σ for j = k and zero otherwise.
So, there is autocorrelation, but no correlations among replications.

The working model specifies an approximation to the DGP for the mean
and the variance of the data. In the GLM a linear function Xβ is used as an
approximaion to the mean E{Yj} = gθ(Z), where X is a p× k matrix and β a
k-vector of coefficients. The noise is assumed to have temporal correlations but
remains unspecified for the moment. Then the working model on replication
j is Yj = Xβ + rj, where the residual rj = gθ(Z) − Xβ + ej contains both
the modeling error gθ(Z) −Xβ and noise ej. The variance of the residual rj
is again Σ since the modeling error is fixed (but see below for the estimated
residual). The model Xβ could correspond to the DGP, that is gθ(Z) = Xβ,
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Fig. 1. Convolution of the HRF and the stimulus function for an event-related (left)
and a blocked design (right). Stimulus presentation latencies for condition A (solid
blue) are indicated with filled circles, and open circles for condition B (dashed red).
Parameters are: a1 = 6, a2 = 12, b1 = b2 = 0.9, c = 0.35 [18].

but in general they are different. It is assumed that the matrix X has full
column rank, r(X) = k, such that X ′X is nonsingular.

The main parameters of interest in fMRI are the amplitude parameters β
of the BOLD response time series. To model the delayed response, a hemody-
namic response function (HRF) is used, convolved with the stimulus presen-
tation timing of the experiment. A possible HRF used in analyses is a double
gamma function [17,18]. The stimulus (“on-off”) function is given by s(t) = 1
for all time points t that the stimulus is present and zero otherwise. An exam-
ple of the convolution of the time series is given in Figure 1. The experiment
can either be event-related or blocked [1,19]. In an event-related design each
presentation in a sequence can belong to any of the conditions, whereas in a
blocked design a sequence of presentations for a particular condition is given
in blocks (see e.g. [1,20]). An example of each is given in Figure 1. The con-
volutions form the columns of the design matrix X. The design matrix X can
also include temporal derivatives to account for latencies in the BOLD signal
[21,22].

When the coefficients are estimated, a function of the estimate β̂ is usu-
ally tested, which is called a contrast. The variance of a contrast c′β̂ is then
c′var{β̂}c. A possible test of the contrast is the F -test

F = kn
(c′β̂ − a)2

c′var{β̂}c
, (1)

where kn is a factor to obtain the correct null distribution for the hypothe-
sis c′β̂ = a [18]. This statistic is approximately F distributed with degrees
of freedom dependent on the estimate of the contrast variance. It is clear
from the definition that the statistic, and therefore the false positive rate,
is directly influenced by the contrast variance. This paper is about finding
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a robust estimate of this contrast variance such that inference concerning β
through hypothesis testing is valid.

2.1 Estimation

A general way of estimating the coefficients and their variance is explained,
after which the four different methods of defining an estimator are discussed.
This follows mostly the presentations of [7,12]. The four methods are also
summarized in Table 1.

Let S be a nonsingular p × p matrix and premultiply the data, model,
and residual with S such that SYj = SXβ + Srj. Then the variance of the

residual rj is SΣS ′. The least squares estimate is β̂ = (X ′S ′SX)−1X ′S ′SȲ ,

where Ȳ = 1
n

∑n
j=1 Yj. Because the model is misspecified, β̂ is biased, that is

E{β̂} = (X ′S ′SX)−1X ′S ′Sgθ(Z) = β∗ (2)

The mean β∗ can be described as a least squares approximation to the un-
known function gθ(Z), which is very different from linearization of gθ(Z) in
terms of a first order Taylor expansion. The main difference between the least
squares and Taylor approximation, is that the first describes the nonlinear
function on the whole range of Z, whereas the latter is accurate only in a
neighborhood of a specific Z (see [23] for more details on this). The variance
of β̂ is

var{β̂} =
1

n
(X ′S ′SX)−1X ′S ′SΣS ′SX(X ′S ′SX)−1. (3)

An estimate of the residual is given by

r̂j = (Ip −HSX)Sgθ(Z)−HSXSē+ Sej, (4)

where HSX = SX(X ′S ′SX)−1X ′S ′ and ē = 1
n

∑n
j=1 ej. The mean and variance

of the estimated residual are

E{r̂j} = QSXSgθ(Z) var{r̂j} =
1

n
QSXSΣS ′QSX +

n− 1

n
SΣS ′, (5)

where QSX = Ip −HSX . These results are different from other derivations in

three ways (see e.g., [6,7]): (i) the estimator β̂ is biased because the incorrect
model is used for the mean, (ii) the expectation of the estimated residual is
not zero because β̂ is biased, and (iii) the variance of the estimated residual r̂j
contains two terms, one with the design matrix X and one without X, because
the number of replications is taken into account. Especially this last point will
be used to our advantage, as described below.

The easiest least squares estimate is ordinary least squares (OLS). This is
obtained by assuming that the noise variance is Σ = σ2Ip and setting S = Ip.

Then the variance of the OLS estimate β̂O is obtained by estimating the scalar
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noise variance σ2, which is estimated by the sum of the squared residuals [1].
The OLS estimator of the variance of β̂O is then V̂O = σ̂2

O(X ′X)−1. This
estimator is biased because the estimator β̂O is biased. From (4) it is easily
seen that the bias term in the nominator is gθ(Z)′QXgθ(Z). It is well known
that if there are autocorrelations then OLS will lead to variance estimates that
are too small (see also simulation section below), see e.g., [4,24,25].

Another estimator is obtained by assuming that there are autocorrela-
tions and these are estimated. Then set S such that the estimate of the noise
variance is Σ̂ = SS ′ [8]. This is known as (feasible) generalized least squares
(GLS), also sometimes called prewhitening. The variance of the GLS coeffi-
cient β̂G is often written as a product of a scalar variance and a correlation
matrix, Σ = σ2R. Then the estimate of σ2 using β̂G in the residuals is obtained
similarly to OLS and is referred to as σ̂2

G. The correlation matrix R can be
estimated by any number of suggested algorithms. Often an AR(p) process is
assumed for R with p = 1, 2 [9,18], or sometimes higher [26]. Other GLS meth-
ods include transforming the time series to the frequency domain [10–12], and
transforming the time series to the wavelet domain, retaining the correlation
structure to obtain an estimator for R [13]. The variance of the coefficient β̂G
estimated by GLS is V̂G = σ̂2

G(X ′R̂−1X)−1. It is known that if the model for
the variance is correct, then GLS is most efficient, i.e., the estimator attains
the Cramér-Rao lower bound of the variance of all unbiased estimates [14].
The problem is that it is very difficult to find an unbiased estimate of R, even
for large time series (large p), not in the least because the model used for the
temporal correlations is incorrect [4,27,28]. If no correct model is known, then
GLS could lead to very inaccurate variance estimates for the coefficients β.
Friston et al. [4] show clearly that assuming an incorrect model for the noise
correlations can lead to variance estimates that are too high or too low (see
also the section Monte Carlo simulations).

The third estimator is obtained by assuming that Σ = σ2R, with R a cor-
relation matrix, and setting S such that SRS ′ ≈ SR̂S ′ [29]. So, the temporal
correlations in the time series are dominated by a smoothing matrix S such
that the true temporal correlations become irrelevant to estimating the vari-
ance of the coefficient β̂S. This is sometimes called the smoothing approach or
precoloring. Then σ2 is estimated by σ̂2

S, which is the average squared residu-
als divided by the degrees of freedom [29]. The estimator σ̂2

S is biased if β̂S is
biased. The correlation matrix R needs to be estimated, which can be done in
the same manner as described above for GLS, e.g. with an AR(p) model [18].
The variance estimator for the coefficient β̂S using a smoothing matrix S is
equation (3) with Σ̂ = σ̂2

SR̂, which is referred to as V̂S. The smoothing matrix
is often generated by the Gaussian function exp[−(i− j)2/2τ 2], where i is the
row and j the column of SS ′ and τ 2 is the variance [30]. Suggested values for τ 2

are 4 to 8 s2. An advantage of V̂S is that it is robust against using an incorrect
model for R, which is likely to be the case. However, it is in general difficult
to set S such that SRS ′ ≈ SR̂S ′ for each correlation structure [7]. Friston et
al. [4] suggest a bandpass filter for S which minimizes the the squared differ-
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ence for a contrast between the true and estimated variance over all possible
(autoregressive) correlations in the time series. This will result on average in a
reasonable estimate for all voxels with different correlation strengths which is
computationally efficient. Optimally, however, one would like to use the same
estimator for each voxel that somehow adapts to the particular correlation
strengths of that voxel. Such a robust estimator is described next.

The fourth and final estimator considered here is obtained by assuming
there are autocorrelations and setting S = Ip. The basic idea is to use the fact
that the variance of the estimated residual in equation (5) has two components,
one is orthogonal to the design matrix and the other contains only the true
variance if S = Ip. The estimate β̂O is used and from (4) it can be deduced
that with S = Ip for the estimated residuals r̂j

E{r̂j r̂′j} = QX

(
gθ(Z)gθ(Z)′ +

1

n
Σ
)
QX +

n− 1

n
Σ. (6)

Hence, any estimator of the GLM coefficients using these squared residuals
and containing X will make the bias part vanish and leave only the true
variance Σ in the expectation. So, we now use these estimated residuals from
the OLS estimate β̂O to estimate the correlation structure of the noise based
on n replications

W =
1

n− 1

n∑
j=1

r̂j r̂
′
j =

1

n− 1

n∑
j=1

(Yj −Xβ̂O)(Yj −Xβ̂O)′, (7)

The variance estimate of β̂O using Σ̂ = W in (3) with S = Ip is referred to as

V̂W . Because of the expectation of the squared residuals, the estimate V̂W is
unbiased, that is

E{V̂W} =
1

n
(X ′X)−1X ′E{W}X(X ′X)−1 =

1

n
(X ′X)−1X ′ΣX(X ′X)−1. (8)

It works because of the two-part variance in (5) where the second part contains
only the true variance. And there are two parts in the variance because we
took into account the number of replications obtained in the experiment. This
estimator is in other contexts sometimes referred to as the sandwich estimator
[31]. In general the sandwich can be shown to be consistent, i.e. the estimator
will be correct for large n (note the difference of the asymptotics with GLS)
[23]. In this particular case where the design matrix is fixed, the sandwich
estimator is even unbiased, which is usually not the case. As a consequence,
the sandwich is accurate for few number of replications n. The fact that the
sandwich is unbiased without any specification of smoothing or a model for the
noise correlation structure is especially appealing. Another advantage is that
because the residuals are used, the sandwich estimator adapts itself according
to the correlation structure of each voxel. So, it is flexible, computationally
efficient, and robust. These facts of the sandwich can be used to create an
exact test, shown in the next section.
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Table 1
The four methods of estimation and their corresponding variance.

type mean variance

OLS β̂O = (X ′X)−1X ′Ȳ V̂O = σ̂2
O(X ′X)−1

GLS β̂G = (X ′R̂X)−1X ′R̂Ȳ V̂G = σ̂2
G(X ′R̂X)−1

S β̂S = (X ′S′SX)−1X ′S′SȲ V̂S = σ̂2
S(X ′S′SX)−1X ′S′SR̂S′SX(X ′S′SX)−1

W β̂O = (X ′X)−1X ′Ȳ V̂W = 1
n(X ′X)−1X ′WX(X ′X)−1

2.2 Hypothesis testing

Contrasts are used to create a function of the coefficient that will allow to test
for differences between conditions. For example, a single contrast could be
c′ = (1,−1), to test between the amplitudes of different conditions. An F -test
can be used to test the null hypothesis H0 : c′β̂ = a against the alternative
HA : c′β̂ 6= a. Depending on which estimator for β and which variance estimate
is used, a specific F -test will result. For the simple contrast like c′ = (1,−1)
and a = 0 the F -test is the square of the t-test. In general, for a set of q
independent contrasts, collected in the q × k matrix C, the F -test is [32]

F =
n− q
nq

(Cβ̂ − a)′(CV̂ C ′)−1(Cβ̂ − a), (9)

which under H0 is distributed approximately as F with degrees of freedom
dependent on the statistic for the variance V̂ (see Table 1). If OLS or GLS is
used, then the statistics FO and FG are approximately F (q, p−k) distributed.
If the smoothing approach is used then usually the so-called Satterthwaite
approximation fS to the degrees of freedom is used, which depends on both
the autocorrelation and the design [29,7]. So, for the smoothing approach,
the statistic FS is approximately F (q, fS) distributed. Finally, if the sandwich
estimator is used, an exact test FW exists which is F (q, n − q) distributed,
provided the data are multivariate normal, that is if F (e) = Np(0,Σ) (see
appendix for details on this). The degrees of freedom do not contain the length
of the time series (p) because the correlation structure of the time series is
entirely estimated from the information of the replications. The fact that it
is an exact test means that even for very small number of replications n
the F statistic is very accurate, i.e. has a false positive rate of 5%, say. The
assumption of multivariate normal noise in fMRI is important, of course, and
has been investigated. It appears that the assumption of Gaussian noise is
valid in general for low and high signal to noise ratios and is very accurate
when considering difference images, as is often the case in fMRI analyses [33].
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3 Monte Carlo simulations

In this section Monte Carlo simulations are used to show in which circum-
stances each of the four variance estimates works best. This is done by con-
sidering four variables: (i) the autocorrelation of the time series, (ii) misspec-
ification of the correlation structure, (iii) misspecification of the mean model,
and (iv) the type of design. The focus these simulations is on model misspec-
ification instead of specific models for the HRF and autocorrelations. In so
doing the results of these simulations apply to many different situations with
different models but similar misspecification.

3.1 Data generation

A time series is created of fMRI data of length p = 100 seconds. The data
generating process is linear in the parameters, gθ(Z) = Zθ. The columns of
the design matrix Z = (z1, z2) are generated according to the double gamma
function and represent time series corresponding to two different experimental
conditions A and B of either an event-related or a blocked design [3]. The
event-related design was generated using random stimulus presentations with 8
presentations per condition in the 100 second interval with the constraint that
the interstimulus interval was at least 2 seconds. In the blocked design there
was one block for each of the two conditions with 10 stimulus presentations
in each block. The exact designs used are shown in Figure 1. The parameter θ
represents the amplitude of the BOLD response corresponding to a condition.
Noise ej is added to the signal Zθ which is Np(0,Σ) for j = 1, . . . , n with
Σ = σ2R. The correlation matrix R = (ρ)ij is induced by either an AR(1)
or AR(2) process, which are repectively U(t) = φU(t − 1) + ε(t) and U(t) =
γ1U(t− 1) + γ2U(t− 2) + ε(t), where ε(t) is white noise [34]. The coefficients
of the AR(2) process have been sampled from the upper right quadrant of the
stationary area: 0 < γ1 +γ2 < 1 [34]. A single parameter is created to indicate
strength of dependence in the time series φ = γ1 + γ2, which is varied from
0.2 to 0.9, with γ1 at most 0.1 larger than γ2. This also reflects the possible
differences in correlation structure as found between voxels. The variance of
the time series at t = 0 is taken as σ2

0 = 1. Then the data are Yj = Zθ + ej
for j = 1, . . . , n. The variance of the noise is set such that the signal to
noise ratio (SNR) for the time series is approximately one for the average
over replications. This is achieved by multiplying the variance of the noise by
the number of replications. As a consequence the number of replications is
irrelevant, only the SNR is important which is set at an appropriate low level
(see [35]).

3.2 Estimation

Estimation with the working model Yj = Xβ+rj is performed using a different
HRF, h(t)∗, which is a single gamma function [1]. The resulting time series
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Fig. 2. Left and middle: Misspecification of the HRF for condition A with the
largest relative difference of 0.278 for the event-related design and 0.149 for the
blocked design. Right: Three spectra of AR processes are displayed as a function
of frequency for [−π, π] [36]. The AR(1) process was generated with parameter
φ = 0.2, and the two AR(2) process are generated with γ1 = γ2 = 0.3 and γ1 = 0.5
and γ2 = 0.4.

form the columns of X in the working model, such that Z 6= X, and as a result
θ 6= β. The main difference between the functions is that there is no undershoot
using the single gamma function. Additionally, a parameter is varied in the
single gamma function to vary the degree of misspecification. At the largest
misspecification the induces a reduction of amplitude to about 30% and a
delay of about 2 seconds, shown in Figure 2. To quantify the difference between
the DGP and working model, the relative difference between the functions is
computed, defined as the sum of the absolute difference between the functions
divided by their sum over the whole range. This relative difference was for
the event-related design between 0.072 and 0.278, and for the blocked design
between 0.075 and 0.149. The lowest relative difference is solely due to selecting
the incorrect single gamma function. The largest effect of misspecification is
in the event-related design. This is to be expected since the shape of the HRF
is more important in event-related designs [1].

The misspecification in the correlation structure for GLS and the smooth-
ing approach is created by using as a working model an AR(1) instead of an
AR(2). The amount of misspecification depends on the correlation strength of
the generated structure with AR(2), see Figure 2. It is clear that estimating
the correlation structure using an AR(1) process will capture mostly frequen-
cies around zero, whereas it will represent poorly frequencies further away
from zero.

The smoothing approach requires setting the smoothing matrix S by the
parameter τ 2. The value of this parameter depends on both the correlation
strength and the design. Therefore, we first looked at the effect on the variance
estimate for different values of correlation strength φ and τ 2. As can be seen
in Figure 3, there is no absolute correct value of τ 2 for both event-related and
blocked designs and all correlation strengths when only the correlation struc-
ture is misspecified. The value of τ 2 = 8 seems to be most optimal in the sense
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Fig. 3. Ratios of estimated and true contrast variance for event-related and blocked
designs as a function of correlation strength φ and smoothing parameter τ2 for the
smoothing approach.

that it is robust against correlation strength, especially in the event-related
design. This value is used in the simulations for the smoothing approach unless
specified otherwise.

To compare the four approaches three measures are discussed: the ratio of
estimated to true contrast variances, the false positive rate, and power. The
contrast tested is c′ = (1,−1). The true contrast variance is obtained by com-
puting the variance from the N = 500 simulations of the estimate β̂ for each
of the methods. Note that the true variance is defined differently from that
defined in [4], where a second order approximation to the mean squared error
was used. The bias formulation ignored stochasticity of the estimated correla-
tion matrix R̂ which was approximated to the second order. Let D denote the
true variance obtained from the N simulations. The ratio of contrast variance
is then c′V̂ c/c′Dc. If the estimated variance is good then the ratio will be 1,
it is overstimated if the ratio is larger than 1, and it is underestimated if the
ratio is smaller than 1.

The false positive rate or size of a test is the probability of a test to reject
the null hypothesis when it is true. The false positive rate (FPR) is set at 5%.
It is expected that when the contrast variance is underestimated then the FPR
will be too high, that is, higher than 5%; and when the contrast variance is
overestimated, the FPR will be too low. In relation to FPR, power is compared
between methods as a function of effect size. Power refers to the probability
of rejecting the null hypothesis when it is incorrect. Power should be close to
1 given a sufficient effect size. Effect size η is here defined as the difference
between amplitude parameters divided by the true contrast variance. If the
FPR is too low then the power will also be low, and when the FPR is too
high, the power will be high.
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3.3 Results

We first look at the contrast variance when the assumptions about the correla-
tion structure and HRF are correct. Then we determine the effect of misspec-
ification of the autocorrelations on the contrast variance, FPR, and power.
And finally we look at possible interactions of misspecification of the autocor-
relations and the HRF.

When both the HRF and autocorrelations are correctly specified all meth-
ods should work well, except OLS when there are autocorrelations. In Figure 4
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Fig. 4. Ratios of estimated and true contrast variance when the correlation structure
is correctly specified as an AR(1) process as a function of the AR(1) parameter φ.
The methods displayed are: OLS (black, dotted line), GLS (green, dashed-dotted
line), smooth with τ2 = 8 (red, dashed line), smooth with τ2 = 4 (red, long-dashed
line), and sandwich (blue, solid line).

it is clearly seen that for the event-related and blocked design both the sand-
wich and GLS perform equally well for any value of φ. As expected, OLS is
close to one only when φ = 0. In the event-related design the contrast vari-
ance of the smoothing approach with τ 2 = 8 is quite close to one, but the
contrast variance for this τ 2 is underestimated in the blocked design. In the
blocked design the contrast variance is very accurate for all values of φ when
τ 2 = 4. So, when the model for the noise variance is correct the sandwich is
almost exactly the same as the minimum variance GLS regardless of design.
The smoothing approach, on the other hand, depends strongly on the design,
different smoothing parameters are required for accurate contrast variance
estimates.

If there is misspecification in the correlation structure, then the contrast
variance of a robust estimator should still be accurate for all levels of correla-
tion strength. It is clear from Figure 5 that now OLS and GLS perform poorly.
OLS always underestimates the true contrast variance and GLS either under-
estimates or overestimates contrast variance. Both the smoothing approach
and the sandwich are robust for misspecification of the correlation structure
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Fig. 5. Ratios of estimated and true contrast variance when the correlation structure
is misspecified for the four methods for both the event-related and blocked design
as a function of correlation strength φ.

in the event-related design. However, in the blocked design only the sandwich
is robust at all levels of correlation strength. As a consequence the smoothing
approach has a slightly higher FPR than the nominal 5% in the event-related
design but a dramatically higher FPR in the blocked design, shown in Fig-
ure 6. This was expected because from Figure 5 the contrast variance was
underestimated and so the FPR is expected to be too high. In contrast, the
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Fig. 6. False positive rate as a function of correlation strength φ for the event-related
and blocked design when the correlation structure is incorrect.

sandwich has FPR slightly below the nominal 5% in both designs because it
overestimated the contrast variance slightly. In accordance with the contrast
variance and FPR results, the power of the smoothing approach is slightly
higher than that of the sandwich, as can be seen in Figure 7. The power for
the blocked design is comparable.

In addition to misspecification of the correlation structure the HRF model
can be misspecified. To look at possible interactions with correlation strength,
we varied both HRF misspecification and correlation strength. As can be seen
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in Figure 8, for the event-related design the sandwich is more accurate than
the smoothing approach, which underestimates the contrast variance. But
there is only a small effect of HRF misspecification for both the sandwich and
smoothing approach. For the blocked design, on the other hand, the smoothing
approach underestimates contrast variance greatly. Accordingly, the FPR of
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Fig. 8. Ratios of estimated and true contrast variance for the event-related and
blocked design when both the correlation structure and HRF model are incorrect.
Two cuts of both the sandwich (blue) and smoothing approach (red) variance esti-
mates are shown, at δ = 0.07 and 0.28 for event-related, and at δ = 0.08 and 0.15
for blocked design.

the smoothing approach in the event-related design is too low, around 2.5%.
This is due to overcompensation of the degrees of freedom fS in the smoothing
approach. When there are no autocorrelations fS is high and when there are
autocorrelations fS is low. When the HRF is modeled incorrectly, fS is too
low so that the FPR is too low. In the blocked design the FPR behaves as
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Fig. 9. False positive rate as a function of relative difference δ for the event-re-
lated and blocked design when both the correlation structure and HRF model are
incorrect. The correlation strength was φ = 0.9.

expected for the smoothing approach: the contrast variance is underestimated
which leads to overestimated FPR. The sandwich remains in both designs
relatively stable around 5%. The power behaves as expected in this case (not
shown): for the smoothing approach the power is similar to that in Figure 7
for the event-related design and higher for the blocked design. The power of
the sandwich is similar to that of Figure 7.

4 Discussion

It has been repeatedly shown that the false positive rate in fMRI brain activ-
ity maps can be quite high if the assumptions of the method are violated (see
e.g., [4,7]). Therefore, the robustness of the variance estimator of the GLM
coefficients is an important issue. It has been shown here that the sandwich is
unbiased and accordingly an exact F -test with the sandwich exists. Addition-
ally, misspecifications in both autcorrelation and HRF model is accommodated
by the sandwich for both event-related and blocked designs. In contrast, the
smoothing approach is affected by both autocorrelation and HRF misspecifi-
cation. Additionally, the smoothing approach requires a smoothing parameter
which must be specified for each correlation structure to get accurate results.
In contrast, the sandwich variance has two main advantages to the smoothing
approach: (i) the sandwich adapts to local changes in correlation structure,
whereas the smoothing approach does not, and (ii) no model or parameter
needs to be determined for accurate results with the sandwich.

The potential of the application of the sandwich to real data is large. For
example, we have applied the sandwich to real fMRI data in Weeda et al. [37].
In that paper we took a multivariate approach to model the GLM coefficients
using Gaussian shaped functions. Using an incorrect shape function and incor-
rect autocorrelation assumptions, we showed that the contrast variance is still
accurate of the sandwich. Using the sandwich we were able to find a plausible
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set of areas of brain activity in an auditory task.
Another area where the sandwich can be used is random effects analysis

[38], which is our current work. The first level of a two-level random effects
model requires only an OLS estimate of the coefficient of each subject, and
its sandwich. Then at the second level, the group effects are estimated with
OLS again, and another sandwich is formed which is simply the sandwich of
the first level variance with the group design for all subjects.
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Appendix

To prove the distributional result of the statistic FW we assume three things:
(i) the DGP as stated in section 2, (ii) the working model of section 2,
and (iii) the noise is multivariate normal, i.e. F (e) = Np(0,Σ). Then, to
prove that FW is central F distributed with degrees of freedom q and n − q,
we need to show: (i) the variance CV̂WC

′ is Wishart distributed, (ii) Cβ̂
and V̂W are independent, and (iii) the degrees of freedom are q and n − 1
(see e.g., [39] chap. 7 and 8). (i) By proposition 7.4 of [39] we have that if
(n − 1)V̂W ∼ Wk(n − 1, V ) then (n − 1)CV̂WC

′ ∼ Wq(n − 1, CV C ′), where

V = var{β̂O}. So, if V̂W is Wishart distributed we are done. Rewrite V̂W ,
such that if Uj = (X ′X)−1X ′rj, then n(n − 1)V̂W =

∑n
j=1 UjU

′
j. Now Uj is

Nk(0, (n−1)V ). This is seen by noting that E{Uj} = (X ′X)−1X ′QXgθ(Z) = 0
and var{Uj} = n−1

n
(X ′X)−1X ′ΣX(X ′X)−1, because of the variance of the

residuals. Then by definition (n − 1)V̂W ∼ Wk(n − 1, V ). For (ii), to show
independence of Cβ̂O and V̂W , it is sufficient to show independence of β̂O and
Uj. Because the data are normal by assumption, the covariance of β̂O and
Uj needs to be zero to show independence. Since the covariance of (Ȳ ′, r′j)

′ is
1
n
QXΣ, it then follows that Cβ̂O and V̂W are independent. To show (iii), that

the degrees of freedom are q for the numerator and n−1 for the denominator,
proposition 8.2 of [39] is used. It implies that if Cβ̂O − a ∼ Nq(0, CV C

′) and

(n − 1)CV̂WC
′ ∼ Wq(n − 1, CV C ′), then FW ∼ F (q, n − q). The first part is

true under H0 and from the variance of the OLS estimate β̂O, and the second
part was shown in (i). �
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