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Abstract

Undirected graphical models have many applications in such areas as machine learn-
ing, image processing, and, recently, psychology. Here we are interested in a typical
application from the social sciences: latent variable modeling. In this context it is
often of interest to know what the graph on the binary variables looks like when
the latent (continuous) variables are unobserved (are marginalized over). Assum-
ing that the continuous variables are Gaussian and the binary nodes have logistic
probability conditioned on the continuous variable, we show that the binary nodes
adjacent to the continuous nodes, are completely connected whenever the adjacent
continuous nodes are connected. Next, we show that the mean and variance param-
eters of the continuous nodes affect the cliques of the original graph, and that the
variance and covariance parameters affect combinations of the cliques. As a special
case we obtain the Ising model when the binary nodes only have edges to continuous
nodes. We illustrate these results with examples and provide a description of how
these results can be applied to distinguishing between a latent variable model and
an Ising model.
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1 Introduction

Graphical models are popular in many applications such as machine learning,
image processing, social science, and recently psychology. In psychology a pop-
ular model is the so-called latent variable model (Bollen, 1989). For example,
to explain the symptoms of depression (observed variables) a single unobserved
(latent) variable is used to explain the dependence structure among the symp-
toms (Cramer et al., 2010; Borsboom et al., 2011; Schmittmann et al., 2013).
If a latent variable is a trait, then such a model is sometimes referred to as
an item response model. As another example, consider image analysis with a
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slice of the brain obtained from a functional magnetic resonance image (fMRI).
Here the objective is to know how brain regions communicate to obtain com-
plex behavior. Then, knowing what kind of underlying structure could have
created this image could help with dimension reduction. This dimension re-
duction makes it feasible to construct networks of functionally active brain
regions.

Here we investigate the effect of eliminating continuous variables (marginal-
izing) in an undirected graph with mixed binary and continuous variables. Our
main objective is to discover how the parameters of Gaussian variables will af-
fect the graphical structure (nodes and their interactions) of binary variables
with logistic probability. The Gaussian variables correspond to unobserved
variables and the binary variables to observed variables.

Previous work on mixed (hybrid) graphs of discrete and continuous vari-
ables includes the conditional Gaussian (Lauritzen, 1996). A limitation of these
networks is that a Gaussian node cannot be a parent of a discrete node. This
issue is taken up in several papers, where the joint distribution of Gaussian
and discrete variables (with logistic probability function) are approximated
by either a quadratic lower bound (Gaussian shape, variational approach)
(Murphy, 1999; Lerner et al., 2001) or a mixture of truncated exponentials
(Cobb and Shenoy, 2004). In contrast to these advances, we focus here on the
exact joint probability and the marginal distribution where only the continu-
ous (Gaussian) variables are integrated out. Our main interest is in how and
where in the network of discrete variables the Gaussian parameters affect the
resulting marginal distribution. This is more in line with the exact results by
Lauritzen (1996), but then on undirected graphs where continuous variables
can be parents of discrete variables.

We first use a result by Castillo et al. (1998) where it is shown that only
the nodes adjacent to the continuous variables are affected by the marginaliza-
tion. We then show that marginalization over normally distributed variables
which are combined linearly, results in graphs where the mean and variance
parameters affect the cliques of the binary variables and the variances and
covariance parameters affect the combinations of cliques of the binary nodes.
As a special case we show that when all binary nodes are only connected to
continuous variables, then the marginal distribution over the binary nodes is
an Ising model. We also suggest some hypothesis test to distinguish between
modeling with or without a latent variable.

This paper is organized as follows. We first provide some background to
undirected graphical models. Then we show that the marginal distribution
of the binary nodes is affected only in the nodes adjacent to the continuous
nodes (boundary). We use this result to show that if we assume a multivariate
normal distribution for the continuous variables and a conditional Bernoulli
distribution for the binary variables, then the mean and variance parameters
of the multivariate Gaussian are associated with the cliques of the original
graph and that the variance and covariance parameters are associated with the
combinations of cliques. To illustrate the theory we provide several examples.
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Finally, we show how these results can be applied to models in the social
sciences.

2 Undirected graphical models

An undirected graphical model or Markov random field is a set of probabil-
ity distributions representing the structure of some graph G. There are two
equivalent ways of defining a Markov random field: (i) in terms of Markov
properties and (ii) in terms of the factorization property.

Let G = (V,E) be an undirected graph, where V is the set of nodes
{1, 2, . . . , p} and E = V × V is the set of edges {(s, t) : s, t ∈ V }, with size
|E| = m. A subset of nodes Q is a cutset or separator set of the graph if
removing Q results in two (or more) components. For instance, Q is a cutset
if any path between any two nodes s ∈ A and t ∈ B must go through some
q ∈ Q. A clique is is a subset of nodes in C ⊂ V such that all nodes in C are
connected, that is, for any s, t ∈ C it holds that (s, t) ∈ E. A maximal clique
is a clique such that including any other node in V will not be a clique.

For an undirected graph G, we associate with each vertex s ∈ V a random
variable Xs ∈ X for discrete and Ys ∈ Y for continuous variables. For any
subset A ⊂ V of nodes in we define a configuration xA = {xs : s ∈ A}. The
nodes in V can be associated with both discrete variables Xs with s ∈ D ⊆ V
and continuous variables Ys with s ∈ U ⊆ V , where D∪U = V an D∩U = ∅.
A configuration xC for a clique C is {xs, s ∈ C}, where C can contain both
discrete and continuous variables. An edge set restricted to the edges among
a subset D ⊆ V is denoted by ED. For subsets of nodes A, B, and W , we
denote by XA ⊥⊥ XB | XW that XA is conditionally independent of XB given
XW .

Definition 2 (Markov property) A random vector X is Markov with respect
to G if XA ⊥⊥ XB | XW whenever W is a cutset that yields two disjoint subsets
A and B.

For each clique C in the set of all cliques C of graph G a compatibility function
ψC : X |C∩D| ∪ Y |C∩U | → R+ maps the states of the nodes in clique C to the
positive reals. When normalized, the product of the compatibility functions
defines the distribution.

Definition 3 (Factorization property) The distribution of the random vector
Z factorizes according to graph G if it can be represented by a product of
compatibility functions of the cliques

p(x) =
∏
C∈C

ψC(xC) (1)

For strictly positive distributions the Hammersly-Clifford theorem says that
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the Markov and factorization properties are equivalent (Cowell et al., 1999;
Lauritzen, 1996).

Definition 4 (Exponential family) Given a random vector X with values in
X p, let φ(x) = (φα : α ∈ I) be a vector of functions (potential functions or
sufficient statistics), with φα : X p → R and I an index set. Associated to
this vector of sufficient statistics is a vector η(θ) of (canonical) parameters. A
distribution is exponential family if it has the density function

p(x) = exp [η(θ)′φ(x)− A(θ)] (2)

where A(θ) is known as the log partition or cumulant function and is defined
by

A(θ) = log
∫
X p

exp [η(θ)′φ(x)] ν(dx) (3)

The cumulant function ensures that the probability sums to one and can
also be used to determine the moments of the distribution p(x) (Koller and
Friedman, 2009; Wainwright and Jordan, 2008; Bickel and Doksum, 2007;
Brown, 1986). An exponential family distribution is minimal if the set of
sufficient statistics (φα : α ∈ I) are linearly independent.

Example 5 (Ising model) Let X ∈ X |D| = {0, 1}|D| be a binary random
vector associated with the graph G = (D,E). If we assume that each Xs

is distributed as Bernoulli then we have an exponential family for X. The
Ising model is known from statistical physics to model the magnetic field
(see e.g., Kindermann et al., 1980; Cipra, 1987; Kolaczyk, 2009). The Ising
model considers cliques of sizes one and two nodes only, so the interactions
are at most pairwise. Let θ be the parameter vector containing the |D|+ |E|
parameters. The distribution can be written as

pθ(x) = exp

∑
s∈V

θsxs +
∑

(s,t)∈E
θstxsxt − A(θ)

 (4)

where

A(θ) := log
∑

x∈{0,1}|D|

exp

∑
s∈V

θsxs +
∑

(s,t)∈E
θstxsxt


is the log normalization constant. It is immediate that the Ising model is
exponential family with sufficient statistics φ(x) = (xs, s ∈ D;xsxt, (s, t) ∈ E).
It is also minimal since the functions in φ(x) are linearly independent, i.e.
〈u, φ(x)〉 is not a constant a.e. for any nonzero u ∈ R|D|+|E|.
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Example 6 (Gaussian random field) Let Y ∈ Y |U | = R|U | be a continuous
random vector associated with the graph G = (U,E). If we assume a multi-
variate Gaussian (normal) distribution for Y with mean µ and covariance Σ,
then the usual form of the distribution is

pθ(y) = cθ exp
[
−1

2
(y − µ)′Σ−1(y − µ)

]
It can be shown that the Markov property results in zeros of the precision
(inverse covariance) matrix (Lauritzen, 1996). If Γst = 0 in the precision matrix
Γ = Σ−1, then s and t are conditionally independent given all other variables
and (s, t) /∈ E. The distribution is again exponential family with the form

pθ(y) = exp

∑
s∈V

(µ′Γsys + Γssy
2
s)−

1

2

∑
(s,t)∈E

Γstysyt − A(θ)

 (5)

where the parameters θ = (µ,Γ) are collected in a single vector and Γs is the
sth column of Γ and the log normalization function is

A(θ) = log
∫
Rp

exp

∑
s∈V

(µ′Γsys + Γssy
2
s) +

∑
(s,t)∈E

Γstysyt

 dy
× exp

−1

2

∑
(s,t)∈E

Γstµsµt


The terms of cross products follow from the Markov property for Gaussian
random fields, that Γst = 0 whenever Ys ⊥⊥ Yt | YV \{t,s}. The sufficient statis-
tics for the Gaussian random field are φ(x) = (ys, y

2
s , s ∈ V ; ysyt, (s, t) ∈ E).

3 Marginal distribution of the binary variables

We use the factorization of compatibility functions for the cliques to determine
the joint distribution of a mixed graph with binary and continuous variables.
From this distribution we can obtain the marginal distribution. We first derive
a general result from Castillo et al. (1998) that shows that the marginal is
changed only at the nodes adjacent to the continuous variables. Then when
we additionally assume that the continuous variables are multivariate normal
and the binary variables Bernoulli with logistic function, then the resulting
marginal is exponential family, and can for some graphs be interpreted as an
Ising model.

To show how the continuous variables in the graph affect the marginal dis-
tribution we use the factorization of Definition 3 . The compatibility functions
are probabilities without normalization. Upon integration over the continuous
variables in U we normalize the obtained function to obtain a probability
distribution. We first give an example to motivate our main result.
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Fig. 1. Graphs of Example 7 for the distribution p(x, y) (a) and for the marginal
p(x) (b). In (a) is the one-factor model with nodes in the boundary ∂G, where the
continuous variable separates all nodes xs with s ∈ D. The marginal p(x) in (b) is
seen to follow the distribution from Lemma 10 such that the remaining variables
form a clique C = {x1, x2, x3}.

Example 7 Consider the graph G = (V,E) in Fig. 1. Let X ∈ {0, 1}3 be a
binary random vector and Y ∈ R is the continuous variable. We identify the
set D with the random variables {X1, X2, X3} and the set U with {Y } for
convenience. This graph is known in psychometrics as the one-factor model
with three indicators (Bollen, 1989) or an item response model. The continuous
variable separates the binary variables, known as local independence. The
joint distribution pθ(x, y) can be obtained from the factorization property of
Definition 3, where the compatibility functions of the cliques are multiplied.
The cliques are C1 = {x1, y}, C2 = {x2, y}, and C3 = {x3, y}. Let µ be the
mean of the variable Y and σ2 its variance. For the binary variables we assume
the logistic function for the probability of xs conditional on y, i.e.,

pθ(xs | y) =
exp[xsy]

1 + exp[y]
(6)

Using the unnormalized probabilities as compatibility functions, the factor-
ization property of Definition 3 gives

pθ(x, y) ∝ ψC1(x1, y)ψC2(x2, y)ψC3(x3, y)

= exp

[∑
s∈D

xsy −
1

2
(y − µ)2/σ2

]

= exp

[(
µ/σ2 +

∑
s∈D

xs

)
y − 1

2
y2/σ2 − 1

2
µ2/σ2

]

Let Ẽ denote the set of edges among the nodes in D after marginalizing. In-
tegrating with respect to y using the Gaussian integral with linear component
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gives the marginal

pθ(x) = exp

1

2

(
µ/σ2 +

∑
s∈D

xs

)2

σ2 − 1

2
µ2/σ2 − A(θ)


= exp

(µ+ σ2/2)
∑
s∈D

xs + σ2
∑

(s,t)∈Ẽ

xsxt − A(θ)


where A(θ) is the normalizing constant, and Ẽ = {(1, 2), (2, 3), (1, 3)}. The
resulting graph can be seen in Fig. 1. This immediately shows that we are
dealing with a specific case of the Ising model, seen in (4).

This example shows that the Gaussian integral including a linear component
gives the pairwise interactions of the Ising model. This happens because in the
graph corresponding to the joint distribution there were no edges between the
binary nodes, and so the only cliques are those including the continuous vari-
able. The effect of marginalizing in completely continuous graphs was given
by Castillo et al. (1998). They showed that only the nodes that are adjacent
to the nodes over which is marginalized (boundary) are affected.

Definition 4 (Boundary and closure) Given a graph G = (V,E) and a subset
A ∈ V , the boundary ∂A of A is the set of nodes that are not in A but have
neighbors in A, i.e., ∂A = {s /∈ A : (t, s) ∈ E, t ∈ A}. The closure of A ⊆ V ,
denoted Ā, is the set A together with the boundary ∂A.

Castillo et al. (1998) also showed that the marginal graph has cliques whenever
the nodes in the marginal are connected by adjecent nodes that are connected
and subsequently marginalized over. Denote by s ∼ t that there is a path
between s and t, that is, that there are edges (s, v1), (v1, v2), . . ., (vk, t) that
connect s to t. Note that a path defines an equivalence relation.

Definition 8 (Connectivity components) A connectivity component τs for s
is defined as the set of nodes in the graph G = (V,E) that are connected to s,
that is τs = {t ∈ V \{s} : t ∼ s}. Let T be the set of connectivity components
in G. For each connectivity component τ ∈ T we define the completed edge
set Ẽτ = {(s, t) : s, t ∈ τ} as the edge set with an edge (s, t) for every s, t ∈ τ
in the same connectivity component. It follows that ẼT = ∪τ∈T Ẽτ .

We will be concerned with the marginal of nodes in D. We therefore need to
know which nodes in D are connected to some nodes in U of the same connec-
tivity component. We denote by TU the connectivity components restricted to
U .

Example 9 Consider the graph in Figure 2 where we have nodes in D,
(x1, x2, x3) and nodes in U , (y1, y2). All nodes are in the same connectiv-
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(b)

Fig. 2. Graphs of Example 9 for the distribution p(x, y) (a) and for the marginal
p(x) (b).

ity component. And so T = {τ} = D ∪ U . It follows that the two nodes
in U are also in the same connectivity component since there is a (direct)
path between y1 and y2. Hence TU = U . The completed edge set of D is
{(x1, x2), (x1, x3), (x2, x3)}, which is the completed edge set of the boundary
of the connectivity component in U , i.e., Ẽ∂τ(U).

We derive the result by Castillo et al. (1998) here in Lemma 1, and show that
their result can be applied when marginalizing over continuous nodes in a
mixed graph with binary and continuous nodes. All connectivity components
are completely in U .

Lemma 10 Let G = (V,E) be an undirected graph with discrete variables
(Xs : s ∈ D) and continuous variables (Ys : s ∈ U) and joint distribution
pθ(x, y), which is positive almost everywhere. If pθ(x, y) factorizes according
to G, then the marginal distribution pθ(x) factorizes according to the graph
G̃D = (D, ẼD), where ẼD = ED ∪ Ẽ∂TU and the completed edge set for the
boundary of the connectivity components is Ẽ∂TU = ∪τ∈TU{(s, t) : s, t ∈ ∂τ}.

The proof is in the appendix. Lemma 10 shows that for any connectivity
component τ in U the nodes of the binary variables in D will be fully connected
if they were connected to that component in U . Considering Example 2 again,
Lemma 10 shows that all nodes in D are connected in the marginal, as in
Figure 2(b).

We use this result to show how the parameters of the Gaussian variables
end up in the marginalized distribution, which in some cases is the Ising model.
The assumption of multivariate normality of the continuous variables in U with
mean µ and covariance Σ, immediately gives another characterization of the
completed edge set Ẽ∂TU . In fact, any path can be given as a function of the
concentration parameters (inverse covariance), and so, any non-zero correla-
tion indicates a path between nodes. It follows that the completed edge set
can be described as a clique for all nodes in the same connectivity component.

Lemma 11 Let the nodes Y ∈ R|U | be multivariate normally distributed
with mean µ and covariance Σ. Then the set of edges from the connectivity
components ẼTU that are in U can be characterized as ẼTU = {(s, t) : Σst 6=
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0, s, t ∈ U}.

The proof is in the appendix. Lemma 11 corresponds to the intuition that
when two nodes are connected, the correlation (covariance) is nonzero.

We furthermore assume that the discrete variables are conditionally dis-
tributed as Bernoulli given the nodes in U , and

p(xs | y∂s) =
exp(xs

∑
t∈∂s yt)

1 + exp(
∑
t∈∂s yt)

(7)

This is a common assumption in latent variable modeling (e.g., Bollen, 1989;
Holland, 1990) and is in general popular. For our main result we use this
logistic function without normalization; we normalize after integrating out
the Gaussian variables, as in Example 3. Let ∂G = ∂U ∪ ∂D be the union of
both boundaries.

The use of the latent variable model led us to combine the binary and
continuous variables such that the binary variables in a single clique can be
multiplied and that the continuous variables in the boundary ∂D are combined
linearly.

Definition 12 (Clique function) The clique function cC(xC , yC) : X |C∩D| ×
Y |C∩∂D| → R maps the states of the discrete and continuous variables adjacent
to the discrete variables in clique C ⊆ D̄ to the reals by

cC(xC , yC) =
∏

s∈C∩D
xs

∑
t∈C∩∂D

yt

The vector of these functions for all cliques is denoted by c(x, y).

This definition ensures that the continuous variables are combined linearly
and that the event that all nodes in the clique are 1 if {xs = 1 : ∀s ∈ C}
gives cC(xC) = 1 and zero otherwise. This gives us the sufficinet statistics
φ(x) for the cliques in the binary variables (see, e.g., Wainwright and Jordan,
2008). Note that in this definition the cliques are either in D or in the set of
nodes adjacent to D, the boundary ∂D. This definition corresponds closely to
the one for the conditional Gaussian distribution by Lauritzen (1996), except
here the graph is undirected. Associated with the clique function is a selection
matrix.

Definition 13 Let K∂G be a selection matrix for nodes in the graph G, such
that c(x)′K ′∂Gy is the sum of cliques in the boundary set ∂G that satisfies the
clique function in Definition 12. Specifically, the vector (KD)s = 1 if there is
a clique C ⊆ D indexed by s in c(x) that is completely in D and 0 otherwise.
And (K∂G)st = 1 if C ∩ ∂D 6= ∅ and C ∩ ∂U 6= ∅ for this clique indexed by t
in the vector c(x) and variable ys of s ∈ C ⊆ U , and 0 otherwise.

Definition 13 is a convenient way to combine the binary and continuous vari-
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ables that satisfies the clique function in Definition 12. This allows us to use
the multivariate Gaussian integral to obtain the main result. Using Defini-
tions 12 and 13 and the factorization property of Definition 2 we can write
the compatibility function ψ(x, y) of both continuous and binary variables as
a product of cliques C ∈ C of binary nodes in D, of Gaussian nodes in U , and
of mixed binary and Gaussian nodes

ψ(x, y) =
∏
C⊆D

ψ(xC)
∏

C⊆D∪U
ψ(xC , yC)

∏
C⊆U

ψ(yC)

= exp

∑
C⊆D

cC(xC) +
∑
C⊆∂G

cC(xC , yC)− 1

2
(y − µ)′Σ−1(y − µ)


= exp

[
c(x)′K ′D + (c(x)′K ′∂G + µ′Σ−1)y − 1

2
y′Σ−1y − 1

2
µ′Σ−1µ

]
(8)

where the last expression is the canonical form used in Lauritzen (1996) for
the joint distribution of discrete and Gaussian variables. In Murphy (1999)
and Lerner et al. (2001) a variational approach was used as an approximation
to the joint probability. In general this is required since then marginalization
over both continuous and discrete variables is closed. Another approach to this
issue is taken up in Cobb and Shenoy (2004) where a mixture of truncated
exponentials is used that also results in closure upon marginalization over
both continuous and discrete variables. Here we focus on marginalization over
continuous variables only since we aim to investigate the effect of (hidden)
Gaussian variables on a discrete network.

Our main result is that the marginal distribution of the binary variables
is exponential family, given the assumptions of Gaussian continuous variables.
Furthermore, it shows that the mean and variance parameters of the continu-
ous variables in U affect the cliques of the boundary of U , and the covariance
parameters affect the interactions between the cliques in the boundary of U
that are in the same connectivity component. In some cases the marginal
distribution is identical to the Ising model (see Corollary 15).

Theorem 14 Let G = (V,E) be an undirected graph with V = {U,D}
with continuous variables Y ∈ R|U | associated with nodes s ∈ U and binary
variables X ∈ {0, 1}|D| associated with s ∈ D. Let the distribution of Y be
multivariate normal with mean µ and covariance Σ, and the distribution of
Xs, for s ∈ D\∂U is Bernoulli, and for s ∈ ∂U (nodes adjacent to nodes in
U), conditionally distributed as Bernoulli given y∂s, with probability of success
the logistic function. A set C represents a set of nodes that form a clique. If
pθ(x, y) factorizes according to G, then the marginal distribution pθ(x) and
factorizes over G̃ = (V, ẼD), where where ẼD = ED ∪ Ẽ∂TU . This marginal is
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exponential family over {0, 1}|D| with the form

pθ(x) = exp

[ ∑
C⊆D

cC(xC) +
∑
C∈∂C

∑
s∈C∩∂D

(µs + Σss/2)cC(xC)

+
∑

C1 6=C2∈∂C

∑
s,t∈τ(C1∪C2)

ΣstcC1(xC1)cC2(xC2)− A(θ)

]
(9)

where A(θ) is the log-partition function

A(θ) = log

{
[(2π)|U ||Σ|]1/2

∑
x∈{0,1}|D|

exp

[ ∑
C⊆D

cC(xC) +
∑
C∈∂C

∑
s∈C∩∂D

(µs + Σss/2)cC(xC)

+
∑

C1 6=C2∈∂C

∑
s,t∈τ(C1∪C2)

ΣstcC1(xC1)cC2(xC2)

]}
(10)

which ensures that the sum over all states is 1.

The proof is in Section 4. It can be seen that the nodes that are not adjacent to
U are unaffected by marginalization, as in Lemma 1. Additionally, the means
and variances of the continuous nodes that are adjacent to nodes in D are
seen to affect the binary nodes in the boundary ∂U . And finally, the variances
and covariances will affect the edges in the marginal graph G̃ when two nodes
are in the same connectivity component τ .

Using Definition 13 for the selection matrices of binary and continuous
nodes in cliques, we can rewrite the result in equation (9) as

pθ(x) = exp
[
KDc(x) + µ′K∂Gc(x) +

1

2
c(x)′K ′∂GΣK∂Gc(x)− A(θ)

]
(11)

This corresponds to equation (6.2) in Lauritzen (p. 159, 1996). Note that the
affine transformations with KD and K∂G are not necessarily one-to-one, and
so the representation is in general not minimal (Brown, 1986).

One of the interesting consequences of Theorem 14 is that for graphs that
only have binary nodes in the boundary of the continuous variables in U and
have no edges between them in ED, the marginal distribution is an Ising model.

Corollary 15 (Ising model) Let G be a graph with binary and continuous
nodes such that the graph consists only of the closure of U , that is Ū = U∪∂U .
Assume that the continuous nodes are Gaussian and the discrete nodes are
conditional Bernoulli as in Theorem 14. If ED = ∅, there are no edges among
nodes in D, then the marginal distribution is the Ising model. Furthermore,
the mean and variance parameters are associated with the binary variables
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Fig. 2. Graphs of Example 16 for the distribution p(x, y) (a) and for the marginal
p(x) (b).

and the covariance parameters are associated with the interactions, i.e.,

pθ(x) = exp

[ ∑
s∈D

∑
t∈∂s

(µt + Σtt/2)xs +
∑

u,v∈∂τ

∑
s,t∈τ(∂uv)

Σstxuxv − A(θ)

]
(12)

with sufficient statistic φ(x) = (xs, s ∈ D;xsxt, (s, t) ∈ ẼD)′ and parameters
θ = (µt + Σtt/2, t ∈ ∂D ⊆ U ; Σst, (s, t) ∈ ETU )′.

In Example 7 we have already seen that Corollary 15 applies. There the
marginal graph was a clique (verifying Lemma 1) and there were at most
pairwise interactions with the variance of Y as the parameter. This example
will be considered later again in the section on applications.

3.1 Examples

We now consider some examples to illustrate the main result in the previous
section.

Example 16 Consider the graph in Fig. 2 which is referred to as a two-factor
model with cross-loadings (on x2). Here we have four cliques C1 = {x1, y1},
C2 = {x2, y1}, C3 = {x2, y2}, and C4 = {x3, y2}. Let x = (x1, x2, x3) and
y = (y1, y2). The matrix KD = 0 and c is the identity function here, and

K∂G =

1 1 0

0 1 1


Then

pθ(x, y) ∝ exp
[
(x1 + x2)y1 + (x2 + x3)y2 −

1

2
(y − µ)′Σ−1(y − µ)

]

where Σ = diag(Σ11,Σ22). Integrating with respect to (y1, y2) and some algebra
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x3x2

  

y1

y2

(a)

 x1

x3x2

 
µ1+Σ11/2

 

(b)

Fig. 3. Graphs of Example 17 for the distribution p(x, y) (a) and for the marginal
p(x) (b).

gives

pθ(x) ∝ exp[(µ1 + Σ11/2)x1 + [µ1 + µ2 + (Σ11 + Σ22)/2]x2 + (µ2 + Σ22/2)x3

+ Σ11x1x2 + Σ22x2x3]

= exp

∑
s∈D

θsxs +
∑

(s,t)∈Ẽ

θstxsxt


This again verifies Lemma 10, which specifies that ẼD = {(x1, x2), (x2, x3)},
and so (x1, x3) /∈ ẼD. This is because there are two connectivity components
τ1 = {y1} and τ2 = {y2} in U . Lemma 10 then specifies that the boundaries
∂τ1 and ∂τ2 when 1 � 2, with 1, 2 ∈ U , do not form a clique if they were not
a clique in the original graph with E. The marginal also has the form of an
Ising model, thus verifying Corollary 15.

Example 17 Consider the graph in Fig. 3. The cliques are C1 = {x1, x2, x3},
C2 = {x2, x3, y1}, and C3 = {y1, y2}. Then the clique function for nodes s in
D ∪ ∂D are cC1(xC1) = x1x2x3 and cC2(xC2 , yC2) = x2x3y1. Then

pθ(x, y) ∝ exp
[
x1x2x3 + x2x3y1 −

1

2
(y − µ)′Σ−1(y − µ)

]
Let c(x) = (x1x2x3, x2x3) and y = (y1, y2), and choose KD = (1, 0) and

K ′∂G =

0 0

1 0


Then the marginal is

pθ(x) = exp [x1x2x3 + (µ1 + Σ11/2)x2x3 − A(θ)]
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 x1 x2  x3  

y1 y2 y3

(a)

 

Σ13

x1 x2
Σ12

 x3
Σ23

 

(b)

Fig. 4. Graphs of Example 18, (a) for the distribution p(x, y) and (b) for the marginal
p(x).

Here we see that there is no conditional independence as expected but that the
mean and variance of the Gaussian variable determine the interaction between
the nodes adjacent to y1, which is a result of the marginalization.

Example 18 Consider the graph in Fig. 4. This is a possible representation of
a model (hidden Markov model) where mood changes over time continuously
according to Y and what can be measured is a binary variable X. The cliques
are C1 = {x1, y1}, C2 = {y1, y2}, C3 = {x2, y2}, C4 = {y2, y3}, and C5 =
{x3, y3}. Then the clique functions for nodes s in D ∪ ∂D are cCs(xCs , yCs) =
xsys. Then

pθ(x, y) ∝ exp
[
x1y1 + x2y2 + x3y3 −

1

2
(y − µ)′Σ−1(y − µ)

]

We know from Lemma 10 that the resulting graph will be completely con-
nected (a single clique) because all nodes in ∂D are in the same connectivity
component. In this particular case where each node s in D is connected to a
single node t in U , we can use a single index set for both nodes in D and U ,
say, I = {1, 2, 3}. Then the marginal is

pθ(x) = exp

[∑
s∈I

(µs + Σss/2)xs +
∑
s<t∈I

Σstxsxt − A(θ)

]

From this last equation it is clear that this is the Ising model (Corollary 15)
and that this is minimal exponential. This is because we have that the vector
of sufficient statistics φ(x) = (xs, s ∈ D;xsxt, (s, t) ∈ ẼD) of dimension |D|+
|ẼD| = 6 are linearly independent. The vector of parameters is η = (µs +
Σss/2, s ∈ D; Σst, (s, t) ∈ ẼD) with dimension |U |+ |ẼD| = 6.
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4 Proof of Theorem 14

We can focus on the nodes adjacent to U (the boundary of U) since by
Lemma 10 we know that the nodes in D that are not adjacent to U will
not be directly affected by marginalizing over y. The compatibility functions
for each clique that have no nodes in U , C ∩ U = ∅, is ψC = exp[cC(xC)].
By Definition 12 we have that the nodes s ∈ D in the boundary ∂U de-
pend only on the nodes in ∂s, and so these variables in D are distributed as
Xs | y∂s ∼ Bernoulli(p), with p given in (7). It then follows from Definition 6
that for any clique C ⊆ ∂G such that C ∩∂D 6= ∅ and C ∩∂U 6= ∅ (C ∈ ∂C),
the compatibility function is

ψC(xC , yC) = exp

 ∏
s∈C∩D

xs
∑

t∈C∩∂D
yt

 (13)

We additionally assumed that the continuous vector Y ∈ Ru is multivariate
normal with parameters (µ,Σ). The compatibility function for the vector y is
then

ψU(y) = exp
[
−1

2
(y − µ)′Σ−1(y − µ)

]
(14)

where the cliques can be identified by the patterns of zeros in Σ−1. Let c(x)
be the vector of cliques C ⊆ D. By assumption we can use Definition 2 and
multiply the ψC for all cliques. If we use the selection matrices KD and K∂G

we have the function for all cliques

ψ(x, y) = exp

∑
C⊆D

cC(xC) +
∑
C⊆∂G

cC(xC , yC)− 1

2
(y − µ)′Σ−1(y − µ)


= exp

[
c(x)′K ′D + (c(x)′K ′∂G + µ′Σ−1)y − 1

2
y′Σ−1y − 1

2
µ′Σ−1µ

]
Integrating with respect to y using the multivariate Gaussian integral gives

ψ(x) = a(Σ) exp
[
KDc(x) + µ′K∂Gc(x) +

1

2
c(x)′K ′∂GΣK∂Gc(x)

]
(15)

where a(Σ) = [(2π)|U ||Σ|]−1/2. The matrix K∂G selects cliques with nodes in
both boundaries ∂D and ∂U . Hence, for any node s ∈ U in clique C ⊆ ∂G
we have µscC(xC). And by Lemma 11 we have that for any two nodes s and
t in U that are not connected, i.e., s � t and so are in different connectivity
components, the covariance Σst = 0. Hence, for any s 6= t ∈ τ∩(C1∪C2) ⊆ ∂G
we find ΣstcC1(xC1)cC2(xC2). Note that for any C ⊆ D, cC(xC)2 = cC(xC)
because all variables are binary, which explains why the variances (diagonal
of Σ) end up in the cliques of the nodes. We conclude that the marginal
factorizes according to G̃ with edge set ẼD, where the cliques in the boundary
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∂U are determined by connectivity components in U . From this exposition
and equation (15) we can write the marginal as equation (9). This proves the
form of the marginal.

To show that the marginal is exponential family, let the vector of suf-
ficient statistics be φ(x) = (cC(xC), C ∈ D, cC1(xC1)cC2(xC2), C1, C2 ∈ D).
The dimension of φ(x) is k + q, where k is the number of cliques in D and
q is the number of combinations of cliques in D. Let the vector of param-
eters be θ = (µs, s ∈ U ; Σst, s, t ∈ ETU ) with dimension |U | + |ETU |. The
reparameterization for exponential family is η : R|U |+|ETU | → Rk+q, which is
what K∂G does. We can rewrite the exponential in (15) as the inner product
with terms of single cliques 〈KD + µ′K∂G, c(x)〉 and combinations of cliques
〈K ′∂GΣK∂G, c(x)c(x)′〉, where the last is the matrix inner product. Then the
parameter vector is η(θ) = (KD + µ′K∂G, K

′
∂GΣK∂G) which is a linear trans-

formation of the Gaussian parameters. This representation complies with Def-
inition 3 of exponential family. This proves the theorem. �

5 Application to factor analysis and Ising model

One application is the so-called factor model, a model that (usually) has con-
tinuous latent variables explain the observed correlation pattern in the data.
Examples of factor models are given in Fig. 1 and 2. One of the issues in
modeling is whether the factor model is appropriate; perhaps an Ising model
would be better. Here we suggest a way to answer this question by a test on
the parameters of the Ising models.

In a factor model, the probability p(xs | y) of a correct (Xs = 1) or
incorrect (Xs = 0) response on xs is modeled by a linear combination of
continuous (latent) variables, called factors using the logistic function in (7).
For a one-factor model the log-odds of the two possible probabilities (logit)
reveals the linear structure

logit(xs | y) = log
p(xs | y)

1− p(xs | y)
= θ0 + θ1xsy

Then the logit of a correct response on xs is the linear function θ0+θ1y and the
logit of an incorrect response is θ0. In the psychometrics literature this model
with θ0 fixed over all s ∈ D is known as the Rasch model (de Boeck and
Wilson, 2004). This model can easily be extended to more than one factor
by a linear combination of the continuous variables. This idea corresponds
to our Definition 12 of the clique function to combine binary and continuous
variables. Definition 12 is more general in that it incorporates cliques that have
more than one binary variable. Estimates of the parameters can be obtained
in the generalized linear models framework (McCullogh and Searle, 2001).

An important assumption in these models is that the binary variables are
independent given the continuous variable(s), sometimes known as local inde-
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pendence (Bollen, 1989). This assumption can easily be tested using the ideas
presented here. If there is a one-factor model (a single continuous variable)
underlying the observed configuration x, then the marginal distribution p(x)
is complete (fully connected) and each edge has the same parameter. This is
formally stated in Corollary 19.

Corollary 19 Let G = (V,E) be a graph where each node s ∈ D has one
edge that connects it to the only node t ∈ U (see Fig. 1), with yt distributed
as N(µ, σ2). If the assumptions in Theorem 14 hold, then

(a) the marginal graph G̃ is complete
(b) the marginal distribution p(x) is an Ising model
(c) all parameters for the nodes in D are µ+ σ2/2
(d) all parameters for pairwise interactions in ẼD are σ2.

This corollary implies that in a test for a one-factor model one simply has to
consider the equivalence of the interaction paramters θst, for all (s, t) ∈ ẼD.
This assumption is therefore relatively easy to check. It is possible to esti-
mate the parameters θ in the Ising model using a generalized linear model,
as described in Bühlmann and van de Geer (2011), and then test the hypoth-
esis that H0 : θ = α1, where 1 is the vector (1, 1, . . . , 1). If it is true, then
a one-factor model will do equally well as an Ising model where all nodes
are connected. If the hypothesis is rejected, then an Ising model is a better
description than a factor model.

This example was relatively simple because it was assumed that the edges
between the nodes in D and the single node in U were all identical. A re-
lated result assuming different parameters for each of the edges, say, α =
(αy1, αy2, αy3), as shown in Fig. 5, is easily seen to result in the graph in the
right panel. This is easily seen from Corollary 19. We know from the clique
function in Definition 6 that the cliques over the boundary of D have an ad-
ditional parameter such that for s ∈ C ∩ D, cC(xC , yC) = xsαysy. From the
basic rules for linear combinations of random normal variables we then have
the marginal

p(x) = exp

[ ∑
s∈D

(αysµ+ α2
ysσ

2/2)xs +
∑

(s,t)∈ẼD

αysαytσ
2xsxt − A(θ, α)

]
(16)

which gives the desired result.

We can now test for equality of coefficients αsy = αty for any (s, t), even
without knowledge of the variance of the latent variable or the parameters in
α. Let γst = αysαytσ

2. Then under H0 : αys = α, ∀s ∈ D, we have γst = γsu
is equivalent to αyt = αyu. Hence we can use the estimates of γ to test for
equality of coefficients in α, which indicates similar connection strengths of
the latent variable to the binary, observed variables.
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Fig. 5. Graphs of a factor model (a), including different coefficients between the
continuous node y and the binary nodes x, and for the marginal p(x) in (b).

6 Discussion

We have shown that for a graph with mixed Gaussian and Bernoulli variables
the effect of marginalization can be described in terms of the means, variances,
and covariances of the Gaussian variables in the marginal network of binary
nodes. Specifically, the means and variances end up as parameters of the nodes
in the marginal graph, and the variances and covariances as parameters of the
edges.

One interesting consequence is that a common model in the social sciences,
the latent variable model, reverts to an Ising model when the continuous vari-
able(s) is (are) marginalized over. The latent variable is a convenient construct
and from the theory presented here it can be tested whether an underlying
structure, like a single latent variable, is plausible.

Appendix

Proof of Lemma 10 The marginal p(x) is obtained by integrating over
(ys : s ∈ U), i.e., only the nodes of continuous Gaussian variables in U . By
assumption the factorization for p(x, y) holds. We therefore need only consider
integration over the compatibility functions for cliques that have nodes in U .
That is ∫ ∏

C∈C
ψC(xC , yC)dy =

∏
C∩U=∅

ψC(xC)
∫ ∏

C∩U 6=∅
ψC(xC , yC)dy

No clique C in C can have nodes that are in two different connectivity compo-
nents τs and τt of TU when t � s. Hence, for any clique C we need to integrate
only over the nodes that are in the same connectivity component τ . Hence∫ ∏

C∩U 6=∅
ψC(xC , yC)dy =

∏
τ∈TU

∫ ∏
C∩τ 6=∅

ψC(xC , yC)dyτ

where yτ refers to the variables of nodes in the connectivity component τ .
Since integration over all ys for s ∈ U is performed, we have that the integral∫ ∏

C∩τ 6=∅ ψC(xC , yC)dyτ is a function of nodes in D that are in the boundary
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of τ ∈ U only for each C. This is because the only nodes in D that are in
C ∩ τ are adjacent to U ; otherwise the clique C would contain only nodes
of D and would be in the first part of the marginal distribution. Hence, the
compatibility function becomes ψ∂τ (∂τ), a function of the boundary of the
connectivity component τ . Therefore,∏

τ∈TU

∫ ∏
C∩τ 6=∅

ψC(xC , yC)dyτ =
∏
τ∈TU

ψ∂τ (∂τ)

For any connectivity component τ the integral term ψ∂τ (∂τ) forms a clique
on the boundary ∂τ and need not be factorized further. This shows that
the marginal p(x) factorizes according to the graph G̃D = (V, ẼD), where
ẼD = ED ∪ Ẽ∂TU and Ẽ∂TU = ∪τ∈TU{(s, t) : s, t ∈ ∂τ} is the completed edge
set with all edges in the boundaries ∂τ for all connectivity components τ ∈ TU .
�

Proof of Lemma 11 We use a theorem by Jones and West (2005) that
characterizes a covariance Σst as a product of elements of the concentration
matrix Γ = Σ−1. Let Γ\P be the concentration matrix with rows and columns
deleted in the set of nodes in P (a path). Denote for a path between s and t
of length k, P = {(s, v1), (v1, v2), . . . , (vk, t)}

dP = (−1)k+1γsv1γv1v2 · · · γvkt|Γ\P |

Then Theorem 1 of Jones and West (2005) states that the covariance between
s and t is

Σst =
1

|Γ|
∑
P∈P

dP

If s and t are not in the same connectivity component then in each path P
there will be a γvivj = 0. And so for each P , dP = 0. Hence, the covariance
Σst = 0 if and only if there is no path between s and t. �

Proof of Corollary 15 By Theorem 14 we know that C ⊆ D = ∅ and so
the first term in the exponential function is zero. The cliques in both bound-
aries ∂D and ∂U have by assumption no edges in D, and so each clique
in this graph has at most one node in D. Hence, for any s ∈ C we have
cC(xC , yC) = xs

∑
t∈C∩∂D yt. From this we see that the mean and variances of

the yt in the boundary ∂D are multiplied with the nodes in D of the same
clique, which explains the second term in the exponential. Since each clique
function contains only a single binary node, it is also obvious that interactions
in terms of squares between the cliques in the closure of D will result in pairs
of variables xsxt. This explains the third term. �

Proof of Corollary 19 (a) Since there is only a single continuous variable
in U , there is only one connectivity component. From Lemma 10 we immedi-

19



ately have that the marginal graph G̃ is complete. (b) It is easy to see that
this is a special case of Corollary 15, and so the marginal is an Ising model.
(c) Since there is only one node in U , Corollary 15 implies that each node in
D has parameter µ + σ2/2. (d) Again from Corollary 15 it follows that each
interaction term xsxt has parameter σ2. �
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