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Abstract

If the model for the data are strictly speaking incorrect, then how can one test
whether the model fits? Standard goodness-of-fit (GOF) tests rely on strictly cor-
rect or incorrect models. But in practice the correct model is not assumed to be
available. It would still be of interest to determine how good or how bad the ap-
proximation is. But how can this be achieved? If it is determined that a model is
a good approximation and hence a good explanation of the data, how can reliable
confidence intervals be constructed? In this paper an attempt is made to answer the
above questions. Several GOF tests and methods of constructing confidence inter-
vals are evaluated both in a simulation and with real data from the internet based
daily news memory test.

1 Introduction

One of the challenges in psychology is explaining the data obtained in experimental
research. Such an explanation is often given in terms of a model. It appears quite
difficult to determine whether a model, and hence an explanation, is adequate. One
of the causes of this is that no model is the truth (White, 1981; Golden, 1995). Con-
sequently, testing whether it is the truth seems pointless. At least four questions
then arise concerning model fit or goodness-of-fit (GOF), which require answers.
First, given that a model is incorrect, that is, the model is not true, how good is the
approximation, and how do you test this? Second, a common assumption is that
the data are uncorrelated. This is often, however, not the case. In standard analyses
these correlations are ignored. So how can these correlations be incorporated ade-
quately in the analyses? Third, if the model is incorrect, what distribution should
be used to test the hypothesis that a model fits the data? And fourth, to interpret the
model, that is, to interpret the parameters of the model, confidence intervals of pa-
rameters are used. If approximations to the truth are used, how can we get reliable
confidence intervals?

To see why and in what way these questions are important, an example is first
given to illustrate the problems involved. Consider the example of a regression
analysis of a memory study on forgetting of learned nonsense syllables (described
in Reisberg, 2001, p. 204). In this study, participants were asked to recall a list of
nonsense syllables at several retention intervals. Typically, an increase in retention
interval showed a decrease in the mean number of recalled syllables, as can be seen
in Fig. 1. A regression analysis for this example involves a model which predicts
the mean of the participants for each of the retention intervals. At first glance, an
exponential model seems well suited (dashed line in Fig. 1). Suppose that we used
a linear function (dotted line in Fig. 1) to approximate the true underlying process.
The linear function is obviously incorrect, but how bad is it and how can that be
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tested? In some cases a linear approximation could be reasonable. For example, if
only a subset of the retention intervals were to be analyzed, in which the curve is
(nearly) linear, then the linear approximation could be considered good.

The parameters α and β of the linear function α + βx, where x contains the six
retention intervals, can be estimated by, for example, least squares. Since the same
participants were measured repeatedly, a correlation is expected between the reten-
tion intervals. This has to be taken into account in determining whether the model
fits the data. But the question is how. Standard GOF tests do not account for the cor-
relations in the data. The interpretation of the model, our explanation of the data,
depends in part on the confidence we have in the estimates of the parameters, that
is, it depends on the confidence intervals. A small confidence interval of β means
that the slope of the line can vary to a small extent. And so the slope is probably
significantly different from zero. If this is true, then the linear function might be a
good explanation of the data. But either correlations in the data or the assumption of
a true model can yield too small confidence intervals (Waldorp, 2005). This could
lead to the incorrect conclusion that a model is a good explanation for the data.

Testing whether the linear function fits, means testing the null hypothesis that there
is a relatively small difference between the data and the prediction from the linear
function. Such an hypothesis test often requires that the reference distribution, that
is, the distribution of the statistic, is correct. Quite often the reference distribution
is chi-square. Unless the data are normally distributed, it is often the case that the
GOF test is chi-square distribution is inappropriate. So when only a relatively small
number of observations is available, using the chi-square distribution as a reference
distribution can lead to rejecting too often the null hypothesis that the model fits. It
is therefore difficult to determine whether the linear approximation is adequate.
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Fig. 1. Forgetting data described in Reisberg (2001, p. 204) (dots), the estimated exponen-
tial function (dashed line), and the estimated linear function (dotted line), both estimated
by ordinary LS.
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A possible solution to the three first problems is a test statistic known as Hotelling’s
t-square (T 2). Hotelling’s test is usually associated with testing the hypothesis that
the population means are equivalent in multivariate analysis of variance (MANOVA)
(Johnson and Wichern, 2004). But basically it is tested whether the difference be-
tween the data and the prediction is zero, which is the same as other GOF tests. If in
MANOVA the hypothesis were to be changed to the statement that the prediction of
the model for the mean of the data is correct, then Hotelling’s test would correspond
to a GOF test as required. The advantages of using Hotelling’s test as opposed to
most other GOF tests are that (1) it can be used for models that are not true, (2)
the correlations in the data are incorporated, and (3) it is an exact statistic, that is to
say, the assumed distribution is exactly correct if the data are normally distributed.
If the data are not normally distributed, then a sufficient number of observations
can still lead to correct results, as with other GOF tests.

Of course in practice we need to estimate the parameters of the model, and so
the assumption of MANOVA that the hypothesis (prediction from the model) is
fixed, is not satisfied. In fact, considering that the estimated parameters are random
variables, the model with estimated parameters is also a random variable. Conse-
quently, the distribution of such a modified Hotelling’s test is unknown. By using
a projection based on the first-order derivative of the (incorrect) model of the data,
the distribution of this statistic can be determined. Although this statistic will no
longer be exact, it is still expected to outperform both the traditional and original
Hotelling’s test.

A related problem is that in GOF it is assumed that the model is either correct or
incorrect whereas in model specification it is often assumed that the model is only
an approximation, and so always incorrect. A GOF test will therefore nearly always
indicate that an approximate model does not fit. Following Browne and Cudeck
(1993) a measure of approximate fit is used to quantify the amount of misfit of the
model.

To determine reliable confidence intervals for approximate (incorrect) models, tra-
ditional methods are inappropriate (Golden, 1995). It is shown that either bootstrap
or sandwich estimates should be used when the model is approximate or when the
assumption on the noise correlations is incorrect (White, 1980, 1982; Hastie et al.,
2001; Kauermann and Carroll, 2001; Golden, 1995).

The paper is organized as follows. After a brief definition of approximate models,
GOF testing is discussed. Next four different estimators of standard errors for con-
fidence intervals are presented. In a numerical example three GOF tests and four
methods of determining standard errors are compared. Finally, the results of the
GOF and standard errors are applied to real data from the daily news memory test
(Meeter et al., 2004).
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2 Theory

2.1 Misspecified or approximate models

Consider n independent observations Y1, . . . , Yn of a vector with p variables (reten-
tion intervals in the example) Yj = (Y1j, . . . , Ypj)

′. The observations are identically
distributed according to the probability distribution function F0 = Fθ0(y), param-
eterized by the q vector θ0, the true value. The mean and variance of each Yj are
denoted by µ and Σ, respecively. If Y is normally distributed, for example, then the
true vector θ0 contains the mean µ and the unique elements of the variance matrix
Σ. A model is a set Sθ of distributions Fθ indexed by the parameter vector θ. The
model Sθ does not always contain the true distribution F0. Such a model is said to
be misspecified or approximate. It is generally assumed that a model is an approxi-
mation (see White, 1982; Golden, 1995; Zucchini, 2000, for a similar definition of
approximate models).

To illustrate the principle of the above definition of approximations, consider the
regression analysis of the data in the example. Lets assume that the true model F0

is a normal distribution, and that for each observation Yj = µθ0(x) + ej , where
µθ0(x) = α exp(−βx) and ej is distributed as N(0,Σ). So the mean of F0 is the
function µθ0(x) with parameters θ0 = (α, β)′, and we assume Σ known. Suppose
we try to approximate the exponential function for the mean by a linear function,
fθ(x) = θ11p + θ2x, where 1p is a p vector of ones. This means that the model
Sθ contains all normal distributions with Σ and means obtainable by the linear
function. Then the correct mean of F0 cannot be obtained using fθ(x). Hence, the
model Sθ does not contain F0, and is therefore misspecified.

Define an objective function Qθ which is to be minimized. This could, for instance,
be the negative log-likelihood function, or the least squares function (LS). Since
regression analysis is the main focus of the paper, the LS function is adopted. The
LS function is defined byQθ(y) = (y−µ)′Σ−1(y−µ). This is in fact the generalized
LS (GLS) function, since the (known) covariance matrix Σ is used to account for
correlated noise e. In the example, the retention intervals are correlated, and so
Σ can downweight correlated noise. In practice, Σ is not known and has to be
estimated. An unbiased, nonparametric estimate of Σ is (Muirhead, 1982)

S =
1

n− 1

n∑
j=1

(Yj − Ȳ )(Yj − Ȳ )′. (1)

The nonparametric estimate S is convenient since usually the interest is not in the
noise structure and no structured model is used in this estimate. If the matrix Σ is
simply taken as being proportional to the identity matrix, that is Σ = σ2Ip, then Qθ

is called the ordinary LS (OLS) function.
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2.2 Goodness of fit

We are looking for a GOF test that can distinguish between a correct and incorrect
model with high accuracy. But if the model is incorrect, then an estimate of how
good or bad the approximation is, should be available.

To use a GOF test, the null hypothesis should be available, together with reason-
able distributional assumptions about the data. In the forgetting example, the null
hypothesis could be H0 : µ = fθ, the mean of the distribution of the data is struc-
tured according to an exponential function fθ0 = α exp(−βx). Alternatively, the
null hypothesis could be that fθ = θ11p + θ2x.

A distributional assumption could be that the data Yj are N(µ,Σ), that is, the data
are multivariate normally distributed with mean µ and covariance Σ. Then if a
specified (fixed) θ is available and if Σ is known, a traditional statistic is given by

Cθ = n(Ȳ − µθ)
′Σ−1(Ȳ − µθ) (2)

which is χ2
p distributed under H0 that the mean µθ is correct (Muirhead, 1982),

where χ2
p refers to the chi-square distribution with p degrees of freedom. This test is

referred to as the Gaussian Residual (GR) test. The test rejects the null hypothesis
for values Cθ > χ2

p(α), where χ2
p(α) is the upper quantile of the χ2

p distribution
at significance level α. If no specified θ is available and Σ is unknown, then the
estimates µθ̂ and S can be used. If θ̂ is normally distributed, then Cθ̂ = n(Ȳ −
µθ̂)

′S−1(Ȳ − µθ̂) converges to a χ2
p−q distribution as n grows large (Van der Vaart,

1998). The convergence of Cθ̂ in distribution to χ2
p−q is based on the convergence in

probability of µ̂ and S to the constants µ0 and Σ, respectively (Ferguson, 1996). But
the convergence can be ‘slow’, that is, the chi-square distribution is appropriate only
if the number of observations n (subjects in the retention example) is very large.
The rate of convergence is even slower when the ratio of the number of variables
(retention intervals) to the number of observations p/n is large. Consequently, the
GR test will reject H0 too often when there are not enough observations to justify
the limiting chi-square distribution.

Alternatively, Hotelling’s test could be used if the Yj are N(µ,Σ) or if n is large.
This test is known from MANOVA, where it is tested whether the mean from the
data is equivalent to that of the assumed population. Hotelling’s test can also be
used to test whether a hypothesized function for the mean of the data fits. The two
main advantages are that (1) estimating the correlations in the data are accounted
for, and (2) it is an exact statistic, that is to say, the assumed distribution is exactly
correct if the data are normally distributed. This make Hotelling’s test well suited
to use in cases where a small number of observations is available. Hotelling’s test
is defined as (Muirhead, 1982, p. 98)

T 2
θ = n(Ȳ − µθ)

′S−1(Ȳ − µθ) (3)
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and is under H0 that the mean µθ is correct distributed as kFp,n−p, with k =
(n− 1)p/(n− p), and Fp,n−p refers to the central F -distribution with p and n− p
degrees of freedom. Although this test is more appropriate for small samples than
the GR test and does not assume Σ known, it does assume that some θ is known and
fixed. Often only an estimate θ̂ is available in regression analysis. If the estimate
is included in Hotelling’s T 2 then the distribution of this statistic is unknown. This
is because the additional random variable µθ̂ is included so that the variance of the
residual Ȳ − µθ̂ is no longer simply Σ; it now depends on both Ȳ and µθ̂. If the
distribution of the residual were known, then a modified T 2

θ̂
could be used. Such

a test would have the advantage of an exact distributional result and would allow
using the estimates θ̂ and S for the test. Unfortunately, in general no such exact test
exists. An approximate version does exist, however, as is shown next.

The approximate test T 2
θ̂

utilizes the estimates θ̂ and S, so hardly any prior knowl-
edge is required. The modified version T 2

θ̂
approximates the distribution of Ȳ − µθ̂

by a projection (see the Appendix), such that only the degrees of freedom of the
numerator p of the original Hotelling’s T 2

θ have to be adjusted to p− q. The projec-
tion uses the first-order derivatives of the possibly misspecified model, such that a
tangent plane is as close as possible to the true model in the least squares sense (see
White, 1980, for approximation in least squares sense). If the model is misspecified
in terms of the mean, then this can be defined as h =

√
n(µ0 − fθ), where fθ is a

possibly misspecified function for the mean. This result is stated as a theorem. A
proof of the theorem is given in the Appendix.

Theorem 1. Assume that Yj are multivariate normally distributed with mean µ0 =
µ(θ0) and covariance Σ, and that the function fθ is continuous and has continuous
first-order partial derivatives and converges in probability to f∗ = fθ∗ as n →∞.
Then

T 2
θ̂

= n(Ȳ − fθ̂)
′S−1(Ȳ − fθ̂) ∼ KFp−q,n−p(δh) (4)

with K = (n− 1)(p− q)/(n− p) and Fp−q,n−p(δh) the noncentral F -distribution
with noncentrality parameter δh = n(µ0 − f∗)

′Σ−1(µ0 − f∗). The distribution of
T 2

θ̂
when the null-hypothis is true (δh = 0) is the central F -distribution Fp−q,n−p.

According to the theorem we know the distribution of the modified Hotelling’s test
for a function that does not have to be correct in the strict sense, but the function
must be sufficiently smooth. We need to establish that the modified Hotelling’s test
statistic satisfies the basic requirement of consistency. Informally, a test that is able
to distinguish between the null and alternative hypotheses exactly for large n, is
said to be asymptotically consistent (Van der Vaart, 1998). Such a test satisfies two
conditions. The first is that as n → ∞ the test rejects the null hypothesis when it
is true (Type I error) at most with probability α, with α typically 0.05. A test that
satisfies this is called asymptotically of level α. The second condition is that the
test rejects a model when it is not true (power) with probability 1 as n → ∞. It is
shown that the approximate Hotelling’s test is asymptotically consistent.
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The power function is defined as the probability that T 2
θ̂

is larger than a critical value
for which the null hypothesis is rejected (Van der Vaart, 1998). It is convenient to
write the power function in terms of the reparameterization h =

√
n(θ−θ∗), where

θ∗ could be the true value θ0. Let ||Z̃||2 be distributed asKFp−q,n−p, then the power
function is

Pθ(T
2
θ̂
/(n− 1) > cα) → 1− Ph(||Z̃ +

√
δh||2 ≤ cα)

as n→∞, where cα = (p−q)/(n−p)Fp−q,n−p(α) denotes the critical value based
on the central F -distribution (δh = 0) and the significance level α. It can be seen
that for ||h|| > 0, when the alternative hypothesis H1 is true, the power tends to
1. This also means that the Type II error (not rejecting H0 when it is false) tends
to zero. If the null hypothesis H0 is true, on the other hand, then ||h|| → 0 and
θ∗ = θ0. Then Ph(||Z̃||2 ≤ cα) → 1 as α → 0, and so the test is asymptotically a
level α test. These two results together yield the test asymptotically consistent.

The noncentrality parameter is a (Mahalanobis) distance between the true and ap-
proximate function with respect to the inverse covariance matrix Σ. It can be used
to determine an overall measure of approximation without assuming explicitly that
the proposed model is completely correct. Such additional information can be used
to determine whether the approximate model is a good enough approximation. This
measure has the advantage that “close” and “distant” between the true and approx-
imate model are defined. For this to work, a good estimate of the noncentrality
parameter is required.

Browne and Cudeck (1993) give such an estimate and define a measure for which
close and distant are defined, the so called root mean square error of approximation
(RMSEA). Assume that the conditions of theorem 1 are satisfied. Then the expec-
tation of T 2

θ̂
is equal to p−q

n
+δh, since the covariance matrix S is independent of the

projected residual (see the Appendix). This leads to an estimate of the noncentrality
parameter

δ̂h = max

{
T 2

θ̂
− p− q

n
, 0

}
. (5)

With the estimate δ̂h, the RMSEA can be computed by ε̂ =
√
δ̂h/(p− q). The

RMSEA can be interpreted as a discrepancy measure between the true and approx-
imate model per degree of freedom (since T 2

θ̂
is χ2

p−q asymptotically). The RMSEA
is scale-free and a model fits perfectly if ε̂, with the true δh, is zero. A close fit for
an approximate model is if ε̂ is no larger than 0.1 (Browne and Cudeck, 1993). It
has also been suggested that the RMSEA be used for testing approximate models
(Browne and Cudeck, 1993), but this requires estimates of upper and lower bounds
of ε̂ which can be difficult to determine.
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2.3 Confidence intervals

An indication of the accuracy of parameter estimates of θ can be obtained by com-
puting confidence intervals. Confidence intervals are often based on the asymptotic
normal distribution. For instance, a simple 95% confidence interval for the single
parameter a based on the estimate â, which is assumed N(a, σ2/n), is defined as
(e.g., Seber and Wild, 1989, Ch. 5)

â± tp−q(α/2)σ̂/
√
n, (6)

where tp−q(α/2) is the quantile of the Student t-distribution at α/2 with p − q
degrees of freedom, and σ̂/

√
n is an estimate of the standard error (se). It can be

seen that an accurate confidence interval depends critically on the estimate of the
standard error.

There are several ways to compute the standard error. If either the model or the
noise characteristics are incorrect, the standard method to estimate the standard
error could be inaccurate (see e.g., White, 1980, 1982; Kauermann and Carroll,
2001; Golden, 1995). In this section four methods to compute the standard error
estimates are compared: (1) the inverse of the second-order derivative (Hessian)
matrix, (2) the Hessian with a different noise variance estimate, (3) the sandwich
estimator, and (4) the nonparametric bootstrap estimate. The computation of the
standard errors are discussed in terms of the linear function fθ(x) = θ11p + θ2x.

Let X be a p × q fixed matrix, and θ a q vector, then the linear function can be
written as fθ(x) = Xθ. In the approximate function of the example of forgetting
data X = (1p, x) and θ = (θ1, θ2). The LS function for this approximation is

Qθ(Y ) =
1

n

n∑
j=1

(Yj −Xθ)′Σ−1(Yj −Xθ). (7)

The estimate θ̂ = (X ′Σ−1X)−1X ′Σ−1Ȳ is obtained by minimizing Qθ(Y ) with
respect to θ. The Hessian method is to compute the second-order derivative of Qθ

(e.g., Seber and Wild, 1989). This is J = 2(X ′Σ−1X). The standard errors are the
square root of the diagonal elements of

2J−1 = (X ′Σ−1X)−1 =

1′pΣ
−11p 1′pΣ

−1x

x′Σ−11p x
′Σ−1x


−1

(8)

This assumes that the linear function is true (see the Appendix on the sandwich
estimator). If Σ = σ2Ip, then the familiar covariance matrix 2J−1 = σ2(X ′X)−1 is
obtained. The variance estimate σ2 can be estimated in two ways: from the model
σ̂2 = Qθ̂(Y )/(p− q), with Q the LS function, or based on the mean of the observa-
tions s2 =

∑
i,j(Yij − Ȳi)

2/p(n− 1). If the approximate function is used, it can be
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expected that 2s2J−1 will give better results than 2σ̂2J−1 because s2 is not affected
by bias in the model as is σ̂2. Often, the expectation of J is used instead of J itself.
In linear models, however, the expected Hessian and the Hessian are equivalent.

The sandwich estimator does not assume that the linear function is true. It is derived
from computing the covariance of ĥ =

√
n(θ̂ − θ∗) which for the linear approxi-

mating function can be rewritten as (X ′Σ−1X)−1X ′Σ−1 1√
n

∑n
j=1(µ0 −Xθ∗ + ej)

(see e.g., Van der Vaart, 1998; White, 1980). This has mean zero and covariance
(see the Appendix)

J−1IJ−1 = J−14

1′pΣ
−1Σ∗Σ

−11p 1′pΣ
−1Σ∗Σ

−1x

x′Σ−1Σ∗Σ
−11p x

′Σ−1Σ∗Σ
−1x

 J−1, (9)

where Σ∗ = D + Σ = (µ0 −X ′θ)(µ0 −X ′θ)′ + Σ. It can be seen that if the linear
function were true, then D = 0 and J−1IJ−1 = 2J−1, which is seen to be equiv-
alent to the Hessian method. (See the Appendix for a more elaborate discussion of
the sandwich estimator.)

Finally, the nonparametric bootstrap estimates are computed by taking a random
sample of size nwith replacement,B times from the data Y1, . . . , Yn and estimating
θ each time. Then the standard error is obtained by taking the square root of the
diagonal of (Davison and Hinkley, 1997)

1

B − 1

B∑
i=1

(θ̂i − θ̄)(θ̂i − θ̄)′, (10)

where θ̂i is the ith estimate and θ̄ is the average of B estimates θ̂.

In estimating the standard errors the covariance matrix Σ of ej also presents a prob-
lem. The nonparametric and unbiased estimate S is available but is subject to sam-
pling error. If the ratio of the number of observations n to the number of variables
(retention intervals in the example) p is unfavorable, then it is to be expected that
the standard errors will be affected by the poor estimate (Waldorp et al., 2001).
Therefore, it is expected that for low n the standard error estimates will be less
accurate than for large n.

3 Numerical example

Simulations are presented to evaluate GOF tests and methods of constructing confi-
dence intervals. In the present simulations we used the set-up of the example of the
forgetting curve introduced in the introduction to show the small sample behavior
of the three GOF tests: GR (Cθ), original Hotelling’s (T 2

θ ), and modified Hotelling’s
(T 2

θ̂
). We assume that the true function is exponential. The parameters for the true
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Fig. 2. CDF of the central F -distribution of T 2
θ̂

for the simulated exponential forgetting data
estimated by the exponential function (see text for details). Left: The empirical CDF (solid
line), the theoretical central CDF of the modified Hotelling’s test with F (4, 24) (dashed
line), and the theoretical CDF of the original Hotelling’s test F (6, 24) (dotted line). Right:
the same only with CDF F (4, 196) and F (6, 196).

exponential model are θ0 = (9.569, 0.613), which were estimated by OLS from
the data of Fig 1. The approximate function is linear fθ(x) = θ11p + θ2x. First the
simulations of the GOF tests will be presented followed by a simulation study on
the confidence intervals.

To mimic the temporal dependency in a time series such as the forgetting data,
an AR(1) process was assumed to govern the temporal correlation. This gives rise
to a Toeplitz matrix which has elements (Σ)ij = γ|i−j|, with |γ| < 1 (Chatfield,
1989). Since in the example the retention intervals were in units of hours, it seems
warranted to assume a strong correlation, which is taken to be γ = 0.8. In each
run N(0, ψ2Σ) noise is generated for n = 30, 50, 100, and 200, with ψ2 a scaling
parameter such that 10% of the maximum of µθ0 was used as the noise variance
for the averaged data Ȳ . The absolute correlations generated with this matrix were
between 0.35 and 0.80 with an average of 0.51. The matrix S is estimated and is
used in the LS function Qθ(Y, S), from which the three statistics can be computed:
the approximate version T 2

θ̂
with p − q and n − p degrees of freedom (df) from

theorem 1, the original version T 2
θ with p and n − p degrees of freedom, and Cθ̂

with p degrees of freedom. In the example the number of retention intervals is p = 6
and the number of parameters for both models is q = 2.

It is first shown that the distribution of theorem 1 is valid. Fig. 2 shows that the
theoretical cumulative distribution function (CDF) of T 2

θ̂
approximates the empiri-

cal distribution function well. This is true for both n = 30 and 200. It is difficult to
see, however, whether the CDF with 4 (modified) or with 6 (original) df is more ap-
propriate. The quantile-quantile (QQ) plots in Fig. 3 show that the theoretical CDF
with 4 df (left panel) corresponds best to the empirical CDF in the larger quantiles.
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The consequence of inaccurate “tail behavior” is that the nominal significance level
does not correspond to the true level, and so the null hypothesis is rejected too of-
ten. In Fig. 4 it can be seen that the GR test does not correspond to the theoretical
χ2

4 distribution even when n = 200 (right panel).

The tail probabilities of the tests give information on how often the null hypothesis
is rejected when it is true. This should always be at most α, which in this example
is set to 0.05. From the left panel of Fig. 5 it can be seen that the approximate test
with 4 df is a level α test but that if either 6 df or the GR test is used, it rejects the
null hypothesis too often when few observations are available. All three tests are
asymptotically level α tests. To inspect the power of the tests the linear function is
used as null hypothesis. The tests should reject this hypothesis as often as possible,
that is the power should be close to 1. From the right panel of Fig. 5 it can be seen
that the power for each of the three test statistics is close to 1.

Next the result of theorem 1 is tested when the model is misspecified, that is, the
incorrect linear model is tested. Fig. 6 shows that, if the model is approximate, then
the CDF is only good if the number of observations is large enough (n = 200).
As there is a difference in slope between the empirical and theoretical CDF with
4 df the noncentrality parameter is not singly responsible for the misfit. This is
confirmed by the accuracy of the noncentrality parameter: for n = 30 the relative
difference (δ̂h − δh)/δ̂h is 0.036, and for n = 200 this is 0.048. This also means
that the estimate of the RMSEA is quite accurate. These results suggest that the
projection in the approximate Hotelling’s test causes the misfit of the expected and
sample distribution.

The four methods to estimate the standard errors are compared both with the ap-
proximate linear function and with the true exponential function. The methods are
Hessian using the model for the variance 2σ̂2J−1, Hessian using the means for the
variance 2s2J−1, sandwich estimator J−1IJ−1, and the bootstrap estimate se(θB)
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Fig. 3. Q-Q plots of the empirical CDF (solid dots) and the theoretical CDF (dashed line)
with modified F (4, 194) (left) and original F (6, 194) (right) Hotelling’s test.
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Fig. 4. The empirical CDF (solid line) based on n = 30 (left) and 200 (right) and the
theoretical CDF (dashed line) of the χ2

4 distribution.

based on B = 100. The same parameters for the exponential function and noise
properties are used as mentioned above.

To compare these methods both when the true and the approximate function are
used, three noise conditions are created: (1) ej is N(0, σ2Ip) and is estimated with
S = s2Ip or σ̂2Ip, (2) ej is N(0,Σ) and is estimated with S, and (3) ej is N(0,Σ)
but is estimated assuming S = s2Ip or σ̂2Ip. These conditions can make clear
when each of the different methods to compute se is most accurate. To evaluate the
methods the ratio of the estimated se and the “true” se is computed, which should
equal 1 if the method is good. The “true” standard errors are computed from the
standard deviation of the estimates from 100 simulations.
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GR Cθ̂ (dahsed-dotted line). The solid line is at 0.05, the nominal level of the test. Right:
The power of the three tests.
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Fig. 6. The empirical and theoretical CDF of the F distribution based on n = 30 (left) and
200 (right) when the approximate (linear) function is used. The dotted line represents the
theoretical CDF of the original Hotelling’s test and the dashed line that of the approximate
Hotelling’s test.

In Fig. 7 the ratio of the estimated se to the true se shows that there is not much dif-
ference between the methods except when e ∼ N(0,Σ), S = s2I . This is because
the estimate σ̂2 depends on the assumption that the noise is uncorrelated, which is
not the case.

When the approximate (linear) function is used it is seen in Fig. 8 that the biased
estimate σ̂2 results in overestimation of the se with 2σ̂2J−1. When the noise is
correlated the other methods tend to underestimate the se in a similar way. If the
noise structure is assumed incorrectly, that is e ∼ N(0,Σ), S = s2I , then the
sandwich and bootstrap estimator are accurate, but the others are not.

In the situation where nothing is known about the appropriateness of the model or
of the noise, then both the sandwich and bootstrap se estimate appear most accurate.
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Fig. 7. The ratio of estimated and true se for the true (exponential) function for the different
types of estimators: Hessian using the model 2σ̂2J−1 dashed-dotted line, Hessian using the
means 2s2J−1 long-dashed line, sandwich J−1IJ−1 dotted line, bootstrap se(θB) short–
dashed line. Left: white noise, middle: colored noise, right: colored noise but estimated as
if white.
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Fig. 8. Same as in Fig. 7 for the approximate (linear) function.

Even though the Hessian method σ̂2J−1 can be slightly more optimal in the situ-
ation when both the model and noise structure are known, the difference between
methods is small compared to the inaccuracy when the model and noise structure
could be incorrect.

4 Application to Daily News Memory Test

In the Daily News Memory Test (DNMT) participants were asked through internet
to fill out a questionnaire about news events (Meeter et al., 2004). The questions
considered in the present analysis were 4-alternative forced choice questions, in all
about 30 to 40 filled out by 4239 Dutch participants. The analysis contained 60
out of the 365 days of retention intervals, since after 60 days the number of obser-
vations for each day dropped considerably and could therefore not be used in the
present analysis. Corresponding to the analysis of Meeter et al. (2004) retention in-
tervals were grouped in three consecutive days (bins), resulting in p = 20 intervals.
Absolute correlations between the retention intervals ranged from 0.04 to 0.53 with
an average of 0.23. For more details about the test and the participants see Meeter
et al. (2004). The data are shown in the right panel of Fig. 9.

The GOF test requires normally distributed data whereas recall data is typically
zero-one, Bernoulli distributed and so the sum is distributed as Binomial

∑n
j=1Xij ,

where for retention interval i, Xij equals either 1 or 0. A normal approximation
to the Binomial was used by creating bins at each of the retention intervals i =
1, . . . , p with length, si = [ni/n], where ni is the number of recalled items at (bin)
interval i, n is the number of repetitions set equal for all intervals, and [x] denotes
the integer part of x. The averages 1

si

∑
j∈Ii,k

Xij , with Ii,k the kth bin with si ob-
servations, are then assumed to be distributed as normal. For n = 25 the number
of recalled items in the bins for each of the retention intervals si varied between 36
and 81, with an average of 73. An example of the quality of the approximation can
be seen in the left panel of Fig. 9. The estimated normal curve (dashed line) shows
that the approximation of the normal distribution is acceptable.

A model for the data used in Meeter et al. (2004) and presented in Chessa and
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Fig. 9. Left: Example of the Binomial approximating the normal distribution. An estimate
of the normal curve is shown in dashed line. Right: Data from the DNMT for 60 days (with
bins of 3 consecutive days) (dots), and two fitted models, the MCM (dotted line) and the
linear model (dashed line).

Table 1
Model fits for the memory chain model (MCM) and the linear model

MCM linear

θ̂ (1.56, 0.09,−0.06, 0.002) (0.76,−0.002)

2σ̂2J−1 (0.97, 0.42, 0.33, 0.02) (0.09, 0.003)

J−1IJ−1 (0.04, 0.01, 0.01, 0.0003) (0.003, 0.0008)

GOF F (16, 5) = 0.0013, p = 1 F (18, 5) = 0.002, p = 1

RMSEA ε̂ = 0 ε̂ = 0

Murre (2002) is the memory chain model (MCM). This model assumes that mem-
ory strength can be modeled by a number of points in memory. These points could
be either copies of the memory or some aspects associated with the memory. A
memory is retrieved if one or more of these points can be obtained. Forgetting is
modeled by the disappearance of the points. The MCM function is

fθ(x) = 1− exp

[
−θ1

(
exp(−θ2x) +

θ3

θ4 − θ2

[exp(−θ4x)− exp(−θ2x)]

)]
.

The MCM model fits well to the data as can be seen in Fig. 9, right panel, dotted
line. The parameters for the MCM model and the linear model, their standard errors,
and their GOF and RMSEA indices are given in Table 1.

As can be seen, the standard errors of the parameters are larger when the stan-
dard Hessian method is used compared the sandwich method. This corresponds
to the simulation results in the previous section. The GOF indicates that both the
MCM and linear model fit well. No distinction between models can be made from

16



this index, which seems to correspond to the good fits for both models shown in
Fig. 9. Furthermore, the RMSEA indicates that both models are good approxima-
tions. Therefore, it is concluded in this case that the linear model is sufficient in
explaining the data.

5 Discussion

A model can be misspecified in terms of the mean and (co)variance. What was re-
quired was a way to determine goodness-of-fit (GOF) and reliable confidence inter-
vals for interpretation of the model. To this end three tests were evaluated and four
different methods of constructing confidence intervals were compared. The three
tests were: the Gaussian Residual test, Hotelling’s test, and a modified Hotelling’s
test that takes into account estimated parameters. Hotelling’s modified test was seen
to work well for possibly misspecified models, provided enough observations were
available and the function for the mean is continuous. If the model does not fit, the
root mean error of approximation (RMSEA) provides a way to quantify how good
or bad the approximation is. The RMSEA is based on the noncentrality parameter
of Hotelling’s test and was seen to work well. So, if the model is misspecified, it
can be determined to what to what extent it can be used to explain the data.

Hotelling’s (modified) test also naturally takes into account the correlations in the
data. This circumvents an often violated assumption that there is no dependency
in the data. It was seen in the simulations and in the example of the daily news
memory test that Hotelling’s test accounts for this dependency well. Additionally,
it was shown that for misspecified models reliable confidence intervals can be con-
structed by using either the bootstrap or sandwich estimate for standard errors of
the parameters of the model. The standard Hessian method tends to overestimate
the standard errors when the model is incorrect, which leads to confidence intervals
that are too wide. Significance testing will then result in accepting the null hypoth-
esis too often. With either the sandwich or bootstrap method, significance testing
can be performed at the nominal level (usually 0.05).

The RMSEA can also be used to compare the amount of approximation of other
possibly misspecified models. This was shown in the example of the daily news
memory test. Of course, eventually, a model selection scheme should be used to
distinguish between different models. The methods of Hjort and Claeskens (2003)
and Claeskens and Hjort (2003) are good examples of model selection and model
averaging where the sampling error of the selection process is taken into account.
Their results also do not assume that the true model is known or that is among the
set of possible models. Initially, however, the tool from the GOF test can serve as a
rudimentary selection method.

A drawback of Hotelling’s approach in general is that if not all means for j =
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1, . . . , n are the same, then the T 2
θ (and T 2

θ̂
) cannot distinguish between the weak

hypothesis that the average of the (different) means is zero, or the hypothesis that
all means are zero (Jensen and Ramirez, 1991). If it is reasonable to assume that
the means are approximately equal then tests such as Hotelling’s are appropriate.

Appendix

Proof of theorem 1. By using a linear approximation of ĥ, it is shown that T 2
θ̂

approximately has an KFp−q,n−p distribution. Let ḟθ denote the p × q matrix with
first-order partial derivatives of fθ with respect to the q parameters in θ. If fθ(x) is
sufficiently smooth with continuous first-order derivative, then a linear approxima-
tion by a Taylor-exapansion can be used as fθ̂ = fθ∗ + ḟθ∗(θ̂−θ∗)+op(n

−1/2). This
gives the approximation of the residual Ȳ − fθ̂ solved for the difference θ̂− θ∗ (see
Th. 5.23, Ch. 5 Van der Vaart, 1998, for regularity conditions)

ĥ =
√
n(θ̂ − θ∗) = J−1

∗
1√
n

n∑
j=1

ḟ ′∗Σ
−1(Yj − fθ̂) + op(1)

where J∗ = ḟ ′∗Σ
−1ḟ∗ + Op(1) if fθ(x) is regular and if the residual has a (biased)

normal distribution. (see proof Th. 3.3 Appendix of White, 1981, for more restric-
tive but more readable conditions). With the two approximations, it can be seen
that the residual Ȳ −fθ̂ is distributed as (Ip−P∗)Ȳ + op(1), with projection matrix
P∗ = ḟ∗(ḟ

′
∗Σ

−1ḟ∗)
−1ḟ ′∗Σ

−1, since

Ȳ − fθ̂ = Ȳ − fθ∗ + ḟθ∗(θ̂ − θ∗) + op(n
−1/2)

= (Ip − P∗)(Ȳ − fθ∗) + op(n
−1/2) = (Ip − P∗)Ȳ + op(n

−1/2).

The variance of this is (Ip−P∗)Σ(Ip−P∗)′ = Σ−Ω with rank m− q. The matrix
Ω = ḟ∗J

−1
∗ ḟ ′∗ is the variance matrix of fθ̂(x). Using the Moore-Penrose inverse for

Σ− Ω in Hotelling’s with S, also in Ω̂, T 2
a now becomes

T 2
θ̂
/(n− 1) = n(Ȳ − fθ̂)

′[(n− 1)(S − Ω̂)]+(Ȳ − fθ̂)
d
= n(Ȳ − f∗)

′(Ip − P∗)
′[(n− 1)S]−1(Ip − P∗)(Ȳ − f∗).

The distribution of Tθ̂ is noncentral F if (Ip − P∗)Yj is N((Ip − P∗)µ,Σ) and
(Ip − P∗)Ȳ and S are independent (Muirhead, 1982, p. 98). Normality is true by
assumption. Independence can be shown by writing Ȳ = 1

n
Y ′1n and S = 1

n
Y ′(In−

1
n
1n1′n)Y , where Y ′ = (Y1, . . . , Yn), and realizing that 1′p(In − 1

n
1n1′n) = 0. The

degrees of freedom of the noncentral F -distribution are p − q and n − p. This
can be seen by considering an orthogonal and scaling transformation O and Σ−1/2,
respectively, such that O(Ip − Σ−1/2P∗Σ

1/2)Ȳ , which has the same distribution as
(||(Ip − P∗)Z||, 0, . . . , 0)′ = Z̃, where Z is standard normal. Then by Theorem
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1.4.2 (Muirhead, 1982, p. 26) Z̃ ′Z̃ = Z ′(Ip − P∗)Z is χ2
p−q(δh). The noncentrality

parameter δh follows from (Ip − P∗)(µ0 − f∗) = µ0 − P∗µ0, where P∗µ0 is the
projection of µ0 onto the tangent plane of fθ at θ∗. The variance V of Z̃ yields for
the first element in Z̃, v11 − v′12V

−1
22 v21, which is χ2

n−p (Muirhead, 1982). The ratio
of these independent chi-square random variables gives the result.

Sandwich estimator. It is shown how an estimate of the standard error can be
obtained for a local parameter ĥ =

√
n(θ̂−θ∗). LetX be a p×q fixed matrix, and θ a

q vector, then the linear function can be written as fθ(x) = Xθ. In the approximate
function of the example of forgetting data X = (1p, x) and θ = (θ1, θ2), where 1p

is a p vector of ones. The LS function for this approximation is

Qθ(Y ) =
1

n

n∑
j=1

(Yj −Xθ)′Σ−1(Yj −Xθ).

Then the estimate θ̂ obtained by minimizing the LS function is (X ′Σ−1X)−1X ′Σ−1Ȳ .
The parameter ĥ can be rewritten as

(X ′Σ−1X)−1X ′Σ−1 1√
n

n∑
j=1

(µ0 −Xθ̂ + ej).

To see that its mean is zero at θ∗, consider the prediction mean squared error
(PMSE). The PMSE is in this case

E{Qθ(Y )} = (µ0 −Xθ)′Σ−1(µ0 −Xθ) + p,

with first-order derivative −2X ′Σ−1(µ0 − Xθ). This derivative is proportional to
the mean E{ĥ} above. Since θ∗ minimizes the PMSE, its first-order derivative is
zero at θ∗. Then, since −2X ′Σ−1(µ0−Xθ∗) = 0, it follows that E{ĥ} = 0 as well
if θ̂ converges in probability to θ∗. The covariance of ĥ can now be obtained from
the rewritten form and using the fact that its mean is zero; the covariance is then

E{ĥĥ′} = (X ′Σ−1X)−1X ′Σ−1(D + Σ)Σ−1X(X ′Σ−1X)−1,

where D = (µ0 − X ′θ)(µ0 − X ′θ)′. This is the so-called sandwich matrix. It can
be seen that if the mean function is correct, then D = 0 and the variance matrix
reverts to the familiar result (X ′Σ−1X)−1.
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