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Abstract: Testing whether graphs are different is an essential tool in
graph analysis for empirical sciences. For example, in neuroscience a graph
could be obtained from a group with and without Alzheimers’s disease. If
the data are high-dimensional, that is, there are more parameters than ob-
servations, then a test statistic to determine whether graphs are different is
not obvious. Natural extensions of Wald or score (type) tests, or likelihood
ratio tests are problematic because (a) they require the covariance matrix
of the parameters, which is inherently singular. Solutions exist, but are
cumbersome. And (b), the Wald, score, and likelihood ratio tests’ limiting
distribution is chi-square, and so requires the degrees of freedom to be de-
termined. This is far from trivial in high-dimensional settings. We propose,
following Schott (2007), a test on the Frobenius norm of the difference be-
tween nodewise regression coefficients, which are used to obtain the graph
parameters. We show that the statistic has an asymptotic standard normal
distribution, and so has advantages that (a) no high-dimensional parameter
covariance matrix needs to be inverted, and (b) no degrees of freedom need
to be determined. We illustrate finite performance with some simulations.

Keywords and phrases: debiased lasso, large-scale graphs, high-dimensional
inference.

1. Introduction

Comparison of graph structures (topologies) is becoming increasingly popu-
lar. For instance, in neuroscience typically a network is obtained in a cross-
sectional design where different groups (or cohorts) of stages of Alzheimer are
measured, so that changes in topology may lead to knowledge of the develop-
ment of Alzheimer (Supekar, Musen and Menon, 2009). As another example,
consider the comparison of a group of depressed and non-depressed subjects. A
network can be constructed from the symptoms of the subjects in both groups
(van Borkulo et al., 2014), which should then be compared in order to determine
if the depressed and non-depressed differ with respect to the relations between
symptoms.

In many situations the number of parameters exceeds the number of obser-
vations (p > n) such that standard likelihood or least squares estimation is
not possible. Many algorithms have been put forward to deal with this high-
dimensional situation (e.g., Meinshausen and Bühlmann, 2006; Friedman, Hastie
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and Tibshirani, 2008; Sun and Zhang, 2012). Recently, interest is growing in sta-
tistical inference in high-dimensional statistics, by considering hypothesis testing
(e.g., Meinshausen, Meier and Bühlmann, 2009; Bühlmann et al., 2013; Lockhart
et al., 2014) and confidence intervals (e.g. Pötscher and Leeb, 2009; van de Geer
et al., 2014; Javanmard and Montanari, 2014; Nickl et al., 2013). Here we use the
desparsified lasso by van de Geer et al. (2014) and Javanmard and Montanari
(2014) in a nodewise regression fashion to obtain the weights of a graph, for
which the weights are meaningful. In van de Geer et al. (2014) and Javanmard
and Montanari (2014) the asymptotic sample properties of the desparsified lasso
are obtained by adding a component to the regular lasso and thereby allowing
a standard analysis of asymptotic bias and variance of the estimator. Those
results are used here to construct a hypothesis test to determine whether the
weights in the graphs of the different groups are similar or not.

One way to determine differences between graphs is to construct a Wald
type test, where the covariance matrix of the parameters is used to obtain a
chi-square statistic under the null hypothesis (e.g., Muirhead, 1982; Bilodeau
and Brenner, 1999). Of course, when p > n the covariance matrix is singular
and the Wald test needs correction (e.g., Andrews, 1987; Dufour and Valéry,
2011). A likelihood ratio test to determine graph differences cannot be used
when p > n (Schott, 2007), although Bai et al. (2009) obtained a valid correc-
tion using random matrix theory. This correction, however, is valid for testing
sample covariance matrices, but does not seem a viable option for the current
setting. Several alternatives have been proposed to test for the equality of sam-
ple covariance matrices when p > n and when the data are (approximately)
normal (Ledoit and Wolf, 2002; Srivastava, 2005; Schott, 2007). Here we use
the idea of Schott (2007) to construct a test based on the Frobenius norm di-
rectly. We derive the mean and variance and then show normality by invoking
the Häjek-Sidak central limit theorem. Two advantages of this test are that (a)
there is no need to construct a generalised or otherwise regularised inverse of
the parameter covariance matrix, and (b) there is no need to specify the degrees
of freedom, which is often difficult when p > n.

2. Undirected graphical models

An undirected graphical model or Markov random field is a set of probability
distributions representing the structure of a graph G. Let G = (V,E) be an
undirected graph, where V is the set of nodes {1, 2, . . . , p} and E = V × V is
the set of edges {(s, t) : s, t ∈ V }, with size |E| = m. We associate with each
vertex s ∈ V a random variable Xs. For any subset A ⊂ V of nodes in we define a
configuration xA = {xs : s ∈ A}; we often write x\s to mean xV \{s}. For subsets
of nodes A, B, and W , we denote by XA ⊥⊥ XB | XW that XA is conditionally
independent of XB given XW . A random vector X is Markov with respect to
G if XA ⊥⊥ XB | XW whenever removing W creates two disjoint subsets A
and B. A clique C is a (sub)set of nodes such that any pair of nodes in C has
an edge. For each clique C in the set of all cliques C of graph G a potential
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function ψC : X |C| → R+ maps the states of the nodes in clique C to the
positive reals. When normalized, the product of the potential functions defines
the distribution. The distribution of the random vector Z factorizes according
to graph G if it can be represented by a product of potential functions of the
cliques

p(x) =
∏
C∈C

ψC(xC) (1)

For strictly positive distributions the Hammersly-Clifford theorem says that the
Markov and factorization properties are equivalent (see, e.g., Cowell et al., 1999;
Lauritzen, 1996).

Consider the example of a Gaussian random field. Let X ∈ X p = Rp be a
continuous random vector associated with the graph G = (V,E). If we assume a
multivariate Gaussian (normal) distribution for X with mean µ and covariance
Σ, then the usual form of the distribution is

pθ(x) = cθ exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
It can be shown that the Markov property results in zeros of the precision
(inverse covariance) matrix (Lauritzen, 1996). If Θst = 0 in the precision matrix
Θ = Σ−1, then s and t are conditionally independent given all other variables
and (s, t) /∈ E. In other words, Θst = 0 whenever Xs ⊥⊥ Xt | XV \{t,s}.

3. Estimation of graph parameters

Meinshausen and Bühlmann (2006) use a result of Lauritzen (1996) to show
that identifying the edges in a Gaussian Markov random field is identical to
determining the neighborhood of each of the p nodes. Let X be a Gaussian ran-
dom field of dimension p with mean 0 and covariance Σ. As seen in the example
in the previous section, the inverse Θ = Σ−1 is by the Hammersly-Clifford the-
orem indicative of conditional independence. Hence, the neighborhood of any
node s ∈ V in the Gaussian random field can be determined from the zeros in
the vector (Θst, t ∈ V \s). In fact, the Markov property gives for any nodes in
A and B such that ΘAB = 0

XA ⊥⊥ XB | XV \A,B

It follows that we can define a neighorhood of any node s in terms of the nonzero
values in Θ, i.e., ne(s) = {t ∈ V \s : Θst 6= 0}. The regression coefficients in
the p− 1 vector βs obtained from regressing Xs on the remaining nodes XV \s,
and is βst = −Θst/Θss (Lauritzen, 1996). Hence the neighborhood of s can be
determined in terms of regression coefficients

ne(s) = {t ∈ V \s : βst 6= 0} (2)
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Fig 1. Graphs of regressions involving the nodes 1 and 3 twice.

Since each combination of nodes occurs twice in such a series of regressions (see
Figure 1), βst and βts have to be combined by an or rule, where either can be
nonzero, or an and rule, where both have to be nonzero. In other words, a series
of regressions leads to an estimate of the inverse covariance matrix Θ̂.

The parameters of a Markov random field can be obtained in several ways
(see, e.g., Bühlmann and van de Geer, 2011). One of the most popular choices,
which we will focus on here, is the nodewise regression approach, introduced by
Meinshausen and Bühlmann (2006). Let X ∈ Rpn be a Gaussian random variable
with mean 0 and covariance Σ. For each s ∈ V , assign Ys = Xs, the sth column
of X, and obtain a lasso estimate β̂L,s for the sth node in X by minimizing

τ2λs
(βs) = (Ys −X\sβs)T(Ys −X\sβs)/n+ λs||βs||1 (3)

where ||βs|| =
∑
i |βs,i| is the `1 norm. Each vector β̂L,s = (β̂L,s,i, i ∈ V \s) has

p − 1 elements, giving the regression coefficients of all remaining nodes on s.
Since each coefficient is βst = −Θst/Θss, we can obtain the inverse covariance

matrix by multiplying by Θss. Let τ̂2s = τ2λs
(β̂L,s) be the estimate of 1/Θss. The

completed p× p matrix is then

Θ̂G,st =

{
−βL,st/τ̂2s if s 6= t

1/τ̂2s if s = t
(4)

There are many algorithms to obtain β̂L,s. Here we focus on the desparsified
lasso because it is appealing to use for inference.

3.1. Nodewise regression with the desparsified lasso

The starting point of the desparsified lasso is obtaining the ’normal equations’
as if a regular least squares solution could be obtained. Then van de Geer et al.
(2014) show that the remainder is negligible as sample size increases. We can
obtain a ’normal equation’ as with least squares, with the difference that we use
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a subgradient for the `1 norm ||βs||1. Since this is not differentiable at β̂s,i = 0,

we have that ∂|β̂s,i| = sign(β̂s,i) when β̂s,i 6= 0 and ∂|β̂s,i| is the interval [−1, 1]

when β̂s,i = 0. The subgradient is

−2XT
\s(Ys −X\sβ̂L,s)/n+ 2λs∂||β̂L,s||1 = 0

where β̂L,s is some lasso estimate (e.g., Meinshausen-Bühlmann version) and

∂||β̂L,s||1 represents the subdifferential. This set of conditions for optimization
is called the Karush-Kuhn-Tucker (KKT) conditions (Boyd and Vandenberghe,
2004). Let Σ̂\s,\s = XT

\sX\s/n, which is the covariance matrix without row and
column s. Rewriting these conditions gives

Σ̂\s,\s(β̂L,s − βs) + λ∂||β̂L,s||1 = XT
\sεs/n

Now all we need to do is get rid of the term Σ̂\s,\s and we obtain a way to

get to βs. Unfortunately, this is impossible because in general Σ̂\s,\s is not of
full rank, it has rank min(n, p), which could very well be n. We could use an
approximate inverse Θ̂s of Σ̂\s,\s so that

β̂L,s − βs + Θ̂sλs∂||β̂L,s||1 = Θ̂sX
T
\sεs/n−∆s/

√
n (5)

and

∆s =
√
n(Θ̂sΣ̂\s,\s − Ip−1)(β̂L,s − βs)

van de Geer et al. (2014, section 5) show that under several assumptions (see
below) ∆s is negligible. Then a reasonable way to get rid of the bias (or despar-
sifying the lasso) is to use

β̂dL,s = β̂L,s + Θ̂sX
T
\s(Ys −X\sβ̂L,s)/n (6)

In van de Geer et al. (2014) the choice for the approximate inverse is the
Meinshausen-Bühlmann nodewise regression lasso, since in that case a clear
bound can be obtained on ∆s which makes it work. In the Appendix we show
that also the shrinkage estimator of Ledoit and Wolf (2004) has such a bound.
A shrinkage estimator using weight 0 ≤ ρ ≤ 1 is Σ̂\s,\s,ρ = ρµIp−1 + (1 −
ρ)Σ̂\s,\s. Javanmard and Montanari (2014) show that an algorithm to obtain

Θ̂s which minimises the variance of the desparsified lasso subject to bounding
||Θ̂sΣ̂\s,\s−Ip−1||∞ results in the desired properties of the desparsified lasso. In
the main text we work with the approach of van de Geer et al. (2014) where the
Meinshausen and Bühlmann (2006) nodewise regression is used to determine
the approximate inverse. The assumptions underlying the nodewise regressions
with the desparsified lasso for Gaussian data are the following.

Assumption 1 (True model) Let G = (V,E) be an undirected graph repre-
sented in a multivariate normal distribution with mean 0 and covariance Σ. Let
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the rows of X be independent draws from Np(0,Σ). The nodewise regression
then assumes that for Ys = Xs and all s ∈ V ,

Ys = X\sβs + εs

with random n×(p−1) design matrixX\s, an unknown p−1 vector of parameters
βs, and residuals εs that are normally distributed with mean 0 and covariance
σ2In which are independent of X\s and where σ2 <∞.

The assumption is strong in the sense that the linear structure should hold
exactly (but see Bühlmann and van de Geer (2011, chap. 6) for extensions to
nonlinear variants in the lasso).

Assumption 2 (Properties of Σ) The matrix Σ has positive smallest eigenvalue
δmin > 0 such that 1/δmin = O(1), and the largest variance maxs∈V Σss is
bounded.

This assumption is slightly stronger than in van de Geer et al. (2014) since
we will use this assumption also for nodewise regression using the desparsified
lasso. Assumption 2 implies that the same holds for each principal submatrix
(deleting a row and corresponding column), and so implies the assumption in
van de Geer et al. (2014).

Assumption 3 (Sparsity) It is assumed that the number of nonzero edges s0
to each node is sparse, i.e., the sparsity of each node (or row of Σ−1) s0 is
assumed to be of order o( 3

√
n/ log(p− 1)).

This sparsity assumption is slightly stronger that the one in van de Geer et al.
(2014), which is o(

√
n/ log(p − 1)). This is because of the additional term Θ̂s

which is of order Op(
√
s0) in the `2 norm that we use here to determine a test

statistic (see Corollary 2 in Section 6). With slightly more relaxed assumptions
van de Geer et al. (2014) prove the following.

Theorem 1 Suppose the linear model from Assumption 1 holds, and the prop-
erties of Σ in Assumption 2 and the sparsity Assumption 3 are both satisfied.
Consider that the approximate inverse Θ̂s is obtained by nodewise regression
with penalty of order O(

√
log(p− 2)/n). Then for λs = O(

√
log(p− 1)/n) in

(3) has negligible ∆s and

√
n(β̂dL,s − βs)|X\s ∼ Np−1(0, σ2Θ̂sΣ̂\s,\sΘ̂

T
s ) (7)

and ||Θ̂sΣ̂\s,\sΘ̂
T
s −Θs||∞ = op(1).

For each node s ∈ V we use the estimate β̂dL,s, scaled by τ2s (β̂L) and then

obtain the estimate Θ̂G in (4). Theorem 1 then means we can apply standard
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Fig 2. Estimates (black, filled circles) using the desparsified lasso (6) and their confidence
bounds (black lines) estimated by (7). The true values are the red, open circles. A single
regression is shown with 63 predictors. In the left panel are the estimates and bounds obtained
from a simulation with n = 50, and in the right panel are the estimates and bounds obtained
from a simulation with n = 100 (see Section 5 for details).

theory to obtain confidence intervals for each parameter i conditional on X\s

[β̂dL,s,i − cα, β̂dL,s,i + cα]

where

cα = Φ−1(1− α/2)σ
√

(Θ̂\sΣ̂\s,\sΘ̂
T
\s)ii/n

and Φ−1 is the inverse standard normal cumulative function. This could be
used to select edges by considering whether or not 0 is in the interval (variable
selection).

Obviously, we would like to conclude that all regressions for all nodes s ∈ V
are correct, so that the true underlying graph is recovered. This follows almost
immediately from Theorem 1.

Corollary 2 Let Θ̂G be obtained with the desparsified lasso with λs of order
O(
√

log(p− 1)/n) for all s ∈ V . Suppose Assumptions 1-3 hold. Then

||Θ̂G − Σ−1||∞ = op(1) (8)

A proof is given in Section 6. As a small illustration, in Figure 2 the estimates
and their confidence bounds are shown, obtained from a simulation (see Section
5 for details). The left panel is obtained with 50 observations and the right
panel with 100. The estimates (black circles) are close to the true values (red,
open circles), for both zero and nonzero coefficients, and the confidence intervals
obtained with (7) often contain the true values.

Our aim is to use these results to be able to compare graphs (differences in
edges) between groups in terms of hypothesis tests.

4. Comparing graphs

Close to the idea of tests on squared residuals, we use the idea popular in test-
ing sample covariance matrices of independent groups (Jöreskog and Sörbom,
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1989; Muirhead, 1982). We follow Schott (2007) and use the idea of obtaining
the asymptotic distribution of a random variable with squared differences be-
tween populations (Frobenius norm). The advantage of this statistic is that the
parameter covariance matrix is not used, as it is in the Wald (type) statistic,
avoiding issues with nonsingularity (Andrews, 1987). Furthermore, the distribu-
tion under the null hypothesis is standard normal so that there are no degrees
of freedom, which can be problematic in high-dimensional data (Bühlmann and
van de Geer, 2011).

We want to test whether the population graphs are equivalent. We therefore
have the hypotheses

H0 : Θ1 = Θ2 vs Ha : Θ1 6= Θ2

Instead of working directly with the partial covariance matrix Θ̂G, we use the
estimators from the regression β̂dL,s of dimension p − 1, which are the rows of

the p × p matrix Θ̂G without the diagonal element. We can collect all rows in
the p× (p− 1) matrix B̂.

We start with the simple idea of the test, which is the Frobenius norm of the
difference of the nodewise regression coefficients

||B̂1 − B̂2||2F =
∑
s∈V

∑
t∈V

(β̂1,dL,st − β̂2,dL,st)2 (9)

We derive the asymptotic mean and variance of our statistic and show that it
converges to a standard normal random variable if properly scaled.

We rewrite the the difference between the estimates of the groups

β̂1,dL,s − β̂2,dL,s = (β1,s − β2,s) + [(β̂1,dL,s − β1,s)− (β̂2,dL,s − β2,s)]

We can then use this to obtain the asymptotic expectation of the Frobenius
norm

E[||B̂1 − B̂2||2F | Xj,\s, s ∈ V ; j = 1, 2] =∑
s∈V
||β1,s − β2,s||22 + E||β̂1,dL,s − β1,s||22 + E||β̂2,dL,s − β2,s||22 (10)

where we take conditional expectations separately for each node s ∈ V given
Xj,\s. If we therefore define the random variable

m̂1,2 = ||B̂1 − B̂2||2F −
∑
s∈V

E||β̂1,dL,s − β1,s||22 − E||β̂2,dL,s − β2,s||22

then

E[m̂1,2 | Xj,\s, s ∈ V ; j = 1, 2] =
∑
s∈V
||β1,s − β2,s||22 + o(1)
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and so is 0 only if H0 is true. The desparsified lasso allows computation of the
expectation and variance by considering Corollary 2. There we find that

||β̂dL,s − βs||22 = ||Θ̂sX
T
\sεs/n||

2
2 + op(1)

Then we have that for each component conditionally on X\s

E[||β̂j,dL,s − β1,s||22] = σ2
j tr(Ω̂j,s)/nj (11)

V[||β̂j,dL,s − β1,s||22] = σ4
j tr(Ω̂j,s)

2/n2j (12)

It follows that the variance of m̂12 is

ψ̂12 =
∑
s∈V

σ4
1tr(Ω̂1,s)

2/n21 + σ4
2tr(Ω̂2,s)

2/n22 + σ2
1σ

2
2tr(Ω̂1,s)tr(Ω̂2,s)/(n1n2)

Then we can construct the statistic Tn,p(X1, X2) = m̂12/
√
ψ̂12 to test the dif-

ference in the coefficients of all nodewise regressions. The test statistic can be
written as

Tn,p(X1, X2) =

||B̂1 − B̂2||2F − σ̂2
1

∑
s∈V tr(Ω̂1,s)/n1 − σ̂2

2

∑
s∈V tr(Ω̂2,s)/n2√∑

s∈V σ̂
4
1tr(Ω̂1,s)2/n21 + σ̂4

2tr(Ω̂2,s)2/n22 + σ̂2
1 σ̂

2
2tr(Ω̂1,s)tr(Ω̂2,s)/(n1n2)

(13)

where we use the estimate

σ̂2
j =

1

p

p∑
t=1

(
1

n

n∑
s=1

(Yj,st − Ȳj,t)2
)

(14)

which is consistent under Assumption 1 (Ferguson, 1996). Here we use the Hájek-
Sidak central limit theorem to prove that under H0 (see Section 6)

Tn,p(X1, X2)
d−→ N(0, 1)

This idea can be generalised to q groups. For each of the q(q−1)/2 comparisons,
if the null hypothesis H0 : B1 = B2 = · · · = Bq is true, then we have q(q− 1)/2
N(0, 1) random variables. Hence, we can scale a sum of all Tn,p(Xi, Xj) by

1/
√
q(q − 1)/2 to again obtain a standard normal variable.

Theorem 3 Let the matrix with coefficients B̂j for group j be the desparsi-
fied lasso estimates of (6). Suppose that Assumptions 1-3 hold and that the
groups j = 1, 2, . . . , q are independent with tr(Σj)

2 = O(1). Then under H0 :
B1 = · · · = Bq, the statistic q(q − 1)/2)−1/2

∑
i<j Tn,p(Xi, Xj) converges in

distribution to N(0, 1).
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Table 1
Averaged values (across simulations) of the true difference between regression coefficients

d12, the estimated difference d̂12, and the standard error
√
ψ̂12 when Ha is true and there

is a difference in graphs.

n/p
0.781 1.563 3.125 4.688 6.25

d12 29.631 29.641 29.437 30.636 28.861

d̂12 65.318 44.262 34.840 32.052 29.935√
ψ̂12 62.044 32.903 14.938 9.279 7.937

A proof is given in Section 6. It is obvious from the statistic (13) that the
probability of rejecting H0 depends on the size of the variance, that is,

P[Tn,p(X1, X2) ≥ cα]→ 1− P

[√
ψ̂12cα/2 + ψ̂1 + ψ̂2 ≥

∑
s∈V
||β1,s − β2,s||22

]

where cα/2 is the upper α/2-tail of the standard normal distribution, and ψ̂j =

σ2
j

∑
s∈V tr(Ω̂j,s)/nj .

As such a test is intended to be used in practice, it is of interest to know how
well it performs in finite samples.

5. Simulations

We simulated random networks with p = 64 nodes and an expected number of
edges of 50.4 (2.5%). Fixed weights were placed on the nonzero edges with values
ranging from 0.2 to 0.8. From this graph we generated normally distributed data
for n = 50, 100, 200, 300, and 500 observations. For the generation of data we
used the R package huge (Zhao et al., 2012), and for the estimation of networks we
used glmnet (Friedman, Hastie and Tibshirani, 2010). The tuning parameters
were all obtained with 10-fold cross validation. We used 100 simulations to
determine the relevant statistics.

We give results for the ratios n/p, which range approximately from 0.781
to 7.813. These settings ensured that the sparsity assumption on each node
o( 3
√
n/ log(p − 1)) is almost never violated; the expected degree of a node is

0.788 and with n = 50, and nodewise sparsity is 0.889. Data were generated
independently and identically distributed in samples of size n with mean 0 and
inverse covariance matrix Θj for j = 1, 2 groups. The groups were either the
same under H0, where the Frobenius norm was 0, or different under Ha, where
the average Frobenius norm is given in Table 1. Under H0 the difference in norm
for the estimated parameters was on average 19.823, and this difference under
Ha was is also given in Table 1.

Variable selection was used to determine nonzero edges in a graph: Each edge
was tested for significance at the Bonferroni level α/(p(p−1)), with α = 0.05. We
used this correction since we tested all p(p− 1) coefficients separately. Based on
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these thresholded coefficients, recall (true positive rate) and precision (positive
predictive value) were determined. For the true edge set E and estimated edge
set Ê, recall and precision are defined as

recall =
Ê ∩ E
E

precision =
Ê ∩ E
Ê

The average coverage of the confidence intervals is determined across edges
within (and averaged across simulations), separately for both nonzero coeffi-
cients s0 and zero coefficients sc0. They are defined as

coverage(s0) =
1

|E|
∑

(s,t)∈E

P[Θst ∈ CI(Θ̂st)]

coverage(sc0) =
1

|Ec|
∑

(s,t)∈Ec

P[Θst ∈ CI(Θ̂st)]

The average length of the confidence intervals is determined similarly

length(s0) =
1

|E|
∑

(s,t)∈E

length[CI(Θ̂st)]

length(sc0) =
1

|Ec|
∑

(s,t)∈Ec

length[CI(Θ̂st)]

5.1. Results

Figure 3 shows that recall is reasonably high with ratio n/p = 0.781 (50 observa-
tions), and is nearly 1 when the ratio is 3.125 (200 observations). Additionally,
the precision is reasonably high, so that nearly all edges that are found signifi-
cant are indeed correctly recovered edges. In Figure 4 the coverage and length
of the confidence intervals computed with (7) are shown. The coverage of the
nonzero coefficients is around 0.8 for each ratio n/p, while the coverage is near
1 for the zero coefficients. The length of the interval decreases as expected with
the increasing ratio n/p.

The performance of the test Tn,p(X1, X2) is shown in Figure 5. The left panel
shows that the false positive rate remains under or around the nominal 5% level
for all levels of observations per parameter. The right panel shows that the power
only starts to increase when there are at least 7 observations per parameter but
is at 1 when the this ratio is 10.

6. Proofs

Proof (Corollary 2) Comparing the supremum and `2 norm gives

||Θ̂G −Θ||∞ ≤ max
s∈V
||Θ̂G,s −Θs||2
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Fig 3. Recall (left panel) and precision (right panel) for different numbers of observations per
parameter n/p, with p = 64 and n = 50, 100, 200, 300, and 400.
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Fig 4. The coverage (left panel) and length (right panel) of the confidence intervals, averaged
over all intervals of the edge weights for different ratios n/p. The confidence intervals for the
s0 nonzero coefficients (blue circles) are separately depicted from the sc0 zero coefficients (red
triangles).

Each row Θ̂G,s is β̂dL,si/τ̂
2
s if s 6= i and 1/τ̂2s if s = i. We have that 1/τ̂2s = Op(1)

(see van de Geer et al., 2014, lemma 5.3), and so the ratio remains bounded.
The desparsified lasso estimate is

β̂dL,s = β̂L,s − Θ̂sX
T
\s[X\s(β̂L,s − βs)]/n+ Θ̂sX

T
\sεs/n

So we must have the bound for the regular lasso and the bounds on Θ̂s and
X\s. It follows from Theorem 1 of Raskutti, Wainwright and Yu (2010) that

for the lasso estimate β̂L,s, for all s ∈ V , the `2 norm is ||β̂L,s − βs||2 =

Op(
√
s0 log(p− 1)/n) and ||X\s(β̂L,s − βs)||2/n = Op(

√
s0 log(p− 1)/n) (see
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Fig 5. The false positive rate (left) and power (right) of the test statistic Tn,p(X1, X2) for
different numbers of observations per parameter n/p, with p = 64 and n = 50, 100, 200, 300,
and 400.

also Section 5.4 in van de Geer et al., 2014). Additionally, for the ith row of Θ̂s

we have ||Θ̂s,i||1 = Op(
√
s0) (van de Geer et al., 2014), from which it follows

that ||Θ̂s,i||2 =
√
s0Op(

√
s0). We then have that

||β̂dL,s − βs||2 = ||β̂L,s − βs − Θ̂sX
T
\s[X\s(β̂L,s − βs)]/n+ Θ̂sX

T
\sεs/n||2

≤ ||β̂L,s − βs||2 + ||Θ̂sX
T
\s[X\s(β̂L,s − βs)]/n||2 + ||Θ̂sX

T
\sεs/n||2

≤ Op

(√
s0 log(p− 1)

n

)
+Op

(√
s30 log(p− 1)

n

)
+Op

(√
s0
n

)
The result follows if the sparsity s0 for each s ∈ V is o( 3

√
n/ log(p− 1)). 2

Proof (Theorem 3) We first use the bound in Corollary 2 to determine the
distribution of Tn,p(X1, X2), and then generalise to multiple groups. We shall
determine the expectation and variance of Tn,p and then invoke the Hájek-Sidak
central limit theorem to prove normality.

Rewriting the Frobenius norm by introducing the true values βj,s we obtain

||B̂1 − B̂2||2F =
∑
s∈V
||β1,s − β2,s||22 + ||β̂1,dL,s − β1,s||22 + ||β̂2,dL,s − β2,s||22

+ 2(β1,s − β2,s)T(β̂1,dL,s − β1,s)− 2(β1,s − β2,s)T(β̂2,dL,s − β2,s)

+ (β̂1,dL,s − β1,s)T(β̂2,dL,s − β2,s)

By the Cauchy-Schwartz inequality the first two cross products converge in
probability to 0 when the conditional expectation is taken. Fix some ε > 0 and
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a finite t ∈ Rp−1. Then

E[|tT(β̂2,dL,s − β2,s)|]2 = E[|tT(β̂2,dL,s − β2,s)|1{|tT(β̂2,dL,s − β2,s)| > ε}]2

≤ E[|tT(β̂2,dL,s − β2,s)|2] max
1≤i≤p−1

tiP[||β̂2,dL,s − β2,s||1 > ε]

where the expectation and probability are conditional on X\s. Since P[||β̂2,dL,s−
β2,s||1] > ε] converges to 0 (van de Geer et al., 2014, and by Corollary 2), we
have the result. The last cross product is 0 because the groups are assumed
independent; applying the previous argument results in convergence to 0. Thus
we have (10). And so we can easily obtain the mean (11) and variance (12).

Here we use the Hájek-Sidak central limit theorem to prove normality under
H0. For group j we write

||Θ̂j,sX
T
j,\sεj,s||

2
2/n

2
j−E[||Θ̂j,sX

T
j,\sεj,s||

2
2]/n2j =

1

n2j

nj∑
i=1

nj∑
k=1

cj,s,ik(εj,s,iεj,s,k − σ2δik)

where cj,s,ik = xTj,\s,iΘ̂
T
j,sΘ̂j,sxj,\s,k and xj,\s,i is the ith column of Xj,\s. It

follows that cTj,scj,s/n
2
j = tr(Ω̂j,s)

2. Since the εj,s = εj,s,iεj,s,k − σ2δik are inde-
pendent, zero mean random variables with finite variance by assumption, and
the variance of cTj,sεj,s is σ4

j c
T
j,scj,s, which is n2jσ

4
j tr(Ω̂j,s)

2, the Hájek-Sidak cen-
tral limit theorem (e.g., DasGupta, 2008, chap. 5) gives∑nj

i=1

∑nj

k=1 cj,s,ik(εj,s,iεj,s,k − σ2δik)

σ2
j

√∑n
i,k=1 c

2
j,s,ik

d−→ N(0, 1)

Convergence holds if

maxik cj,s,ik
cTj,scj,s

→ 0

as n increases. This condition holds because we assumed that the smallest eigen-
value of Σ is δmin > 0 such that 1/δmin = O(1) (Assumption 2), ||Θ̂j,s−Θj,s||∞ =
op(1) (Theorem 1), and the Xj,\s are by definition Op(1).

Scaling properly, we obtain cTs = (φ21c
T
1,s, φ

2
2c

T
2,s) with φj = σj/(

√
njσ) and

εTs = (εT1,s, ε
T
2,s). We can then write the statistic that tests whether the groups

differ as

Tn,p(X1, X2) =

∑
s∈V ||β1,s − β2,s||22 +

∑
s∈V c

T
s εs

σ̂2
√∑

s∈V c
T
s cs

+ op(1)

We established that cTj,sεj,s/nj is N(0, σ4
j tr(Ω̂j,s)

2), from which it follows that
under H0 : (β1,s = β2,s, s ∈ V ) the statistic Tn,p converges to N(0, 1). The
extension to q groups results in q(q − 1)/2 comparisons, and hence, scaling∑
i<j Tn,p(Xi, Xj) for all comparisons with 1/

√
q(q − 1)/2 gives the result. 2
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7. Discussion

We showed that the desparsified lasso can be used for Gaussian selection of
edges in a graph with with guarantees similar to those in van de Geer et al.
(2014); Javanmard and Montanari (2014) if the nodewise sparsity is of order
3
√
n/ log(p − 1). In simulations we showed that the recovery is reasonable to

good even for few observations. Additionally, we showed that a high-dimensional
test can be devised that determines whether graphs are different. The test has
the advantages that it does not require degrees of freedom nor does it require
cumbersome inversion of a large-scale parameter covariance matrix, as in Wald
(type) statistics. A downside of the test is that the test is conservative when the
ratio n/p is below about 4.5. For higher ratios the test has small false positive
rate and a power of nearly 1 to detect differences if there indeed are differences
between graphs.

Appendix

Combining shrinkage and desparsified lasso

Here we show that the shrinkage estimator is also suitable to use as an approxi-
mate inverse to Σ̂\s,\s. The shrinkage estimator of Θs is based on a linear combi-

nation of the estimate Σ̂\s,\s = XT
\sX\j/n and the identity matrix I. Ledoit and

Wolf (2004) showed that using estimates of optimal shrinkage weights results
in an estimator with minimal expected quadratic loss. Specifically, a shrinkage
estimator using weight 0 ≤ ρ ≤ 1 is Σ̂\s,\s,ρ = ρµI + (1 − ρ)Σ̂\s,\s. Ledoit
and Wolf (2004) show that the estimates of the parameter µ is Op(1). If we

furthermore assume that the eigenvalues of Σ̂\s,\s are bounded (which is true if
p/n converges to a limit (Yin, Bai and Krishnaiah, 1988)), then we obtain the
following result.

Lemma 6 Let Σ̂\s,\s = XT
\sX\s/n be the covariance matrix and Σ̂\s,\s,ρ is the

shrinkage estimate. If the eigenvalues (δs, s ∈ V \s) are bounded, the sparsity
Assumption 3 s0 = o( 3

√
n/ log(p − 1)) holds, Assumptions 1 and 2 hold, and

the parameter ρ is chosen such that ρ = o(
√

log(p− 1)/[
√
n +
√

log(p− 1)]),
then in the desparsified estimate (6) the error is ||∆s||∞ =

√
n||(Θ̂s,ρΣ̂\s,\s −

Ip−1)(β̂L,s − βs)||∞ = op(1).

Proof By Hölder’s inequality we have that

||∆s||∞ ≤
√
n||(Θ̂s,ρΣ̂\s,\s − Ip−1)||F ||β̂L,s − βs||2

We have for the lasso that ||β̂L,s − βs||2 = Op(
√
s0 log(p− 1)/n) (see Corollary

2). We therefore only need a bound on the first term on the right hand side.
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Let the eigenvalues of Σ̂\s,\s be (δs, s ∈ V \s) which are in the diagonal matrix
D, and the corresponding eigenvectors in the orthonormal matrix U . Then the
shrinkage estimator of Σ̂\s,\s can be written as Σ̂\s,\s,ρ = U(ρµI+ (1−ρ)D)U ′,

and its inverse Σ̂−1\s,\s,ρ = Θ̂s,ρ

Θ̂s,ρ =
∑
s∈V

usu
T
s

δs
ρµ+ (1− ρ)δs

The Frobenius norm is invariant to orthonormal transformations, and so we can
consider

||Θ̂s,ρΣ̂\s,\s − Ip−1||F ≤ max
s∈V

∣∣∣∣ δs
ρµ+ (1− ρ)δs

− 1

∣∣∣∣
It is easily checked that if ρ = o(

√
log(p− 1)/[

√
n+
√

log(p− 1)]), the estimate
of µ is Op(1) (Ledoit and Wolf, 2004), and the largest eigenvalue is Op(1), then

||Θ̂s,ρΣ̂\s,\s − Ip−1||F ≤ Op(
√

log(p− 1)/n). Putting the two bounds together
gives the result. 2
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