
Modified Cohen’s Q for testing simultaneously

dependent and overlapping correlations

Lourens Waldorp Jelte Wicherts

University of Amsterdam, Roetersstraat 15, 1018 WB, the Netherlands

Abstract

The objective is to obtain a version of Cohen’s Q for Fisher transformed corre-
lations between dependent and overlapping data sets. This well-known problem of
testing dependent and overlapping correlations has been addressed for pairwise com-
parisons. In this paper we devise a test that provides a single statistic for a user
provided contrast. For example, the difference between several pairs of correlations
can be tested in a single statistic. Or, subjects being measured in two conditions
giving rise to two correlation matrices for which differences are to be testefd. Simu-
lations show that the test has good finite sample behavior for larger samples (n = 50
or larger) and reasonable for small samples (n = 30).
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1 Introduction

In meta analysis of correlations it is often useful to test whether the corre-
lations from several studies differ in general or are different pairwise. Often
Cohen’s Q is used for Fisher transformed independent correlations. However,
when the correlations are dependent and overlap (i.e., the correlations refer to
an overlapping set of variables), then Cohen’s Q cannot be used since the data
used to obtain the correlations are dependent. This situation arises naturally.
For instance, in a single study with several subtests, the subjects are the same
and the correlations overlap [1]. As another example, correlation matrices of
brain regions obtained from functional magnetic resonance imaging (fMRI)
for the same subjects in different conditions, result in dependent correlations
across conditions. In [1] several methods for pairwise comparisons between
dependent and overlapping correlations are evaluated. However, there is no
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general method to replace Cohen’s Q to obtain a single statistic which tests
several or all differences between dependent correlations simultaneously. In
this paper we present such a method.

Our approach is based on the limiting distribution of the sample correla-
tion matrix [2,3]. Then, using the delta method, we obtain the limiting distri-
bution of the Fisher transformed correlations. We then define a chi-square test
to replace for Cohen’s Q which takes the dependencies between the different
correlations into account. In this chi-square test we can define contrasts that
are of interest, including all pairwise differences between the correlations. The
finite sample behavior is seen to be good for medium to large samples (n = 50
and larger), and reasonable for small samples (n = 30).

2 Method

The objective is to obtain a χ2 test based on a contrast of the Z-transformed
correlations. We use the limiting distribution result of the sample correla-
tion matrix from Neudecker [2] based on normal data. Then we use the delta
method to obtain the distribution of the Z-transformed data.

Let Xi = (Xi1, . . . , Xin)′ denote the random variable of variable i (i =
1, . . . , k) containing the responses of n observations (e.g., subjects). For each
of the k variables the observations (Xi) are collected in the n × k matrix X.
We assume that X is multivariate normal with mean 1nµ

′, where 1n is a vector
of length n with ones, and variance matrix In ⊗ Σ. So, the n observations on
the k variables are independent.

Correlations between variables can be computed, resulting in a k×k matrix
R = S

−1/2
d SS

−1/2
d , where S = (n − 1)−1X ′(In − n−11n1′n)X, S

−1/2
d = S−1/2 �

Ik, and S−1/2 = UΛ−1/2U ′ is the inverse of the square root obtained with
the eigenvalue decomposition with eigenvalues Λ = diag(λ1, . . . , λk). Since
the correlation matrix contains ones on the diagonal and is symmetric, it
is convenient to use the unique elements of R. This is achieved by stacking
columns of R, vec(R), and multiplying this with a k(k − 1)/2× k2 transition
matrix D′ such that D′vec(R) = r ∈ Rq (q = k(k − 1)/2) contains only the
unique elements of R (excluding the diagonal) (see e.g., [3]).

Because confidence intervals based on Fisher’s Z-transform are variance
stabilizing [4], we use the transformed correlations. Fisher’s Z-transform of
the true correlation ρ is defined as

z : ρ 7→ 1

2
ln

1− ρ
1 + ρ

(1)

So we have a random q = k(k − 1)/2 vector z containing the unique and
Z-transformed correlations. In order to devise a test we need the limiting
distribution of Z.

Let P denote the population correlation matrix. Assuming the data X are
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multivariate normal, Neudecker and Wesselman [2] showed that

√
n(r − ρ)→d Nq(0,Φ) (2)

Φ = 2D′(Ik2 −N(Ik ⊗ P ))(P ⊗ P )((Ik2 − (Ik ⊗ P )N)D ∈ Rq
q

where N = Kk � Ik2 . We use this result to obtain the limiting distribution of
the Z-transformed variable z from the delta method. Let ζ = z(ρ) be the true
value of the transformed correlations. As a corollary to (2) we have that

√
n(z − ζ)→d Nq(0, ∂ρzΦ(∂ρz)′) (3)

where ∂ρz is the q × q matrix with first order partial derivatives of Z, which
are (1 − ρ2)−1 for each element. Let Ω = ∂ρzΦ(∂ρz)′. Now that we have the
limiting distribution of z, we can create a contrast C such that the hypothesis
H0 : Cz = u can be tested. For any contrast C with rank r(CΣ) = m we can
define a χ2-test

W = n(Cz − u)′(CΩC ′)+(Cz − u) (4)

where A+ is the Moore-Penrose inverse of A. The random variable W is χ2
m(δ)

distributed with δ = ||Czρ − u||2Ω/2. We use this generalized inverse because
the rank m of C may be smaller that the number of contrasts (rows) devised
in C.

Example 1. An example of an interesting contrast is the difference between
each of the correlations and their mean, that is z− z̄1q. Then C = Iq−q−11q1

′
q,

such that Cz = z − z̄1q. For instance, the contrast with q = 3 is

C =


1 0 0

0 1 0

0 0 1

−
1

3


1 1 1

1 1 1

1 1 1


And so because this contrast is idempotent we have

Wz̄ = n(z − z̄1q)
′(CΩ−1C ′)−1(z − z̄1q) (5)

This is analogous to Cohen’s Q but now the elements in z are correlated be-
cause there are the same subjects for each correlation, and the correlations are
overlapping because the subtests are the same between different correlations.
As a consequence of using this contrast, the rank of CΣ is r(CΣ) = q − 1.
And so, under H0 this test has a χ2

q−1(0) distribution.

Example 2. As a second example, consider the hypothesis that the difference
of correlations is zerobetween any relevant pair of variables under H0. That
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means that the (q−1)× q contrast matrix is C = Iq−1⊗ (1,−1). For example,
with q = 3 correlations we have that

C =

1 −1 0

0 1 −1

 ,
such that

Wp = n(z1 − z2, z2 − z3)

 ω11 + ω22 − 2ω12 ω12 − ω13 − ω22 + ω23

ω12 − ω13 − ω22 + ω23 ω22 + ω33 − 2ω23


−1 z1 − z2

z2 − z3


The rank r(CΣ) = q − 1, so again the degrees of freedom will be q − 1.

Example 3. The proposed method can easily be extended to testing between
two correlation matrices obtained from two (or more) different conditions from
the same subjects, i.e., the data from the two conditions are dependent. Sup-
pose that X1 ∈ Rn

k is obtained in the first and X2 ∈ Rn
k is obtained in the

second condition, for the same n subjects, and so X = (X1, X2) ∈ Rn
2k. This

can be considered as a repeated measure with 2k variables. Then the sample
covariance matrix is

S =

S11 S12

S ′12 S22

 ,
where S12 = (n− 1)−1X1(In − n−11n1′n)X2. The correlation matrix R can be
partitioned similarly. The interest is in testing the unique correlations of R11

and R22. All q = k(2k−1) unique correlations can be put in z and the first and
last k(k − 1)/2 canbe compared in a simple linear contrast. The the 2k × 2k
covariance matrix matrix Φ of z contains the dependencies between the two
conditions, similar to general linear model hypothesis testing (MANOVA) [5].
A contrast can be set up to test for the k(k−1)/2 unique correlation differences
of interest in R11 and R22. In general, this contrast contains k(k − 1)/2 rows
and q columns with each row (1, 02(2k),−1, 0, . . . , 0). For k = 3 the vector
z contains q = k(2k − 1) = 15 correlations, of which only 3 differences are
important to consider (R11 − R22)21, (R11 − R22)31, and (R11 − R22)23. The
contrast matrix to obtain these differences rom z is

C =


1, 012,−1, 0, 0

0, 1, 012,−1, 0

0, 0, 1, 012,−1

 .

The rank r(CΣ) = k(k − 1)/2, which defines the degrees of freedom.
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3 Numerial example

To show finite sample behavior of W we provide a numerical example. In this
example we use the contrast that tests between the transformed correlations
and its average for k = 3 variables and n = 50, and 100 subjects. This gives
q = 3 unique correlations. The contrast is Cz = z − z̄13, as in Example
1 above and so, there are 2 degrees of freedom. We generate 1000 times a
3× 3 correlation matrix R from normally distributed data such that all three
unique correlations are equal to 0.5. This is done by generating each variable
Xi = U+Z (i = 1, 2, 3), where U ∼ N(0, 1) and Z ∼ N(0, 1) are independent.
Then the null hypothesis H0 : z = z̄13 is true. We compare the quantiles of Wz̄

to the χ2
2(0) distribution. It can be seen in Figure 1(a)-(c) that the quantiles

of Wz̄ are very close to the theoretical quantiles of the χ2
2(0) distribution

for n = 100. However, in the tails (large quantiles), the quantiles of Wz̄ are
overestimated slightly when n = 50 and more when n = 30.

To investigate the false positive rate (FPR) and true positive rate (TPR),
that is, Type I error and power, respectively, we use receiver operating char-
acteristic (ROC) curves. In an ROC curve the FPR and FPR are plotted to
indicate whether the FPR remains low while the TPR increases as the thresh-
old (significance level) is increased [6]. For the FPR we use several values of
effect size ||β − β̄|| = 0, 0.408, 1.225, 1.466, and 2.268, for the coefficients
Xi = βU +Z; the coefficients are respectively β = (0.5, 0.5, 0.5)′, (0.5, 0.5, 1)′,
(0.5, 0.5, 2)′, (0.01, 0.5, 2)′, and (0.01, 0.5, 3)′. We used n = 30 and 1000 repli-
cations for each point in the ROC curve. Figure 1(d) shows that for a small
sample, n = 30, the FPR remains low for reasonable values of effect size while
the power is sufficient to be able to detect differences. For example, with only
n = 30 observations and a medium effect size of 1.466 and an FPR of 0.2, the
TPR is about 0.6.

4 Discussion

When testing differences between correlations with overlapping variables or
obtained from the same set of subjects, Cohens Q is inappropriate. Methods
to cope with dependencies between correlations appear to exist for pairwise
comparisons only. We devised a method to test simultaneous comparisons of
differences between correlations. The chi-square test we developed has good
properties for large samples (n = 50 or larger) and reasonable properties for
small samples (n = 30).

The proposed method can also be extended to testing partial correlations.
This is an important subject, especially with the rise of graphical models [7].
In a simple graph (i.e., without self-loops and multiple connections) a zero
partial correlation indicates that two variables are independent given the set
of remaining variables. Graphical models have applications in the analysis of
social and psychological data [8] as well as neuroscience [9].
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Fig. 1. Finite sample behavior is shown of Wz̄ for k = 3 subtests and subjects n = 30,
50, and 100. The empirical distribution of Wz̄ is compared with the theoretical χ2

2(0)
distribution in qq-plots in (a), (b), and (c). In (d) ROC curves are shown for n = 30
and effect size 0 (solid), 0.408 (dashed), 1.225 (dotted), 1.466 (dashed-dotted), and
2.266 (long dash).
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