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Connectivity analysis of fMRI data requires correct specification of regions-of-interest (ROIs). Selection of ROIs
based on outcomes of a GLM analysis may be hindered by conservativeness of the multiple comparison
correction, while selection based on brain anatomy may be biased due to inconsistent structure-to-function
mapping. To alleviate these problems we propose a method to define functional ROIs without the need for a
stringent multiple comparison correction. We extend a flexible framework for fMRI analysis (Activated Region
Fitting,Weeda etal. 2009) to connectivity analysis of fMRIdata. Thismethoddescribes anentire fMRIdata volume
by regions of activation defined by a limited number of parameters. Therefore a less stringent multiple
comparison procedure is required. The regions of activation from this analysis can be directly used to estimate
functional connectivity. Simulations show that Activated Region Fitting can recover the connectivity of brain
regions. An application to real data of a Go/No-Go experiment highlights the advantages of the method.
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Introduction

Functional connectivity analysis yields insight into thebrainnetwork
associated with a particular task. More specifically, it indicates which
brain regions covary during task performance. An adequate functional
connectivity analysis requires that all activated brain regions are
incorporated; otherwise the analysis will yield a biased indication of
the brain network associated with a task (Eichler, 2005).

Regions of task-related activation are commonly identified in two
ways. First, they may be derived from a general linear model (GLM)
analysis, where above threshold voxels are used as regions-of-interest
(ROIs). Identifying regions thiswaymaymiss important regions asmost
GLM multiple testing corrections tend to be conservative (Nichols and
Hayasaka, 2003). This is especially problematic in situationswhere there
is a low signal-to-noise ratio (SNR), for example in single-subject or
developmental studies. This problem of conservativeness may be
alleviated by including a localizer scan. Localizer scans elicit more
significant activation; however, the use of functional localizers is still
subject to debate (for example, Friston et al. (2006)). Second, regions of
task-related activity can be formulated a-priori. This however requires
that the constituents of the brain network are already known, which is
often not the case.Moreover, it requires between-subjects homogeneity
of function-to-structure mapping, which is often hard to attain. That is,
functional regions tend to map to different structural locations across
subjects (Hunton et al., 1996).

In this paper we develop amethod that has increased sensitivity to
identify active brain regions, which in turn yields a more precise
indication of the task-related network. The method is based on a
generalization of Activated Region Fitting (ARF, Weeda et al., 2009). In
ARF the amplitudes of an unthresholded GLM analysis are described
by a parsimonious spatial model in which activated regions are
parameterized by their location, spatial extent and amplitude. The
number of parameters in this model is therefore low compared to the
number of voxels. Consequently ARF has increased power to detect
activation (Weeda et al., 2009). The ARF framework can be easily
extended from a localization perspective to a connectivity perspec-
tive. By regressing trial specific fMRI data on activated regions, the
trial-by-trial varying amplitude of activated regions can be estimated.
These trial-by-trial amplitudes can be used to estimate functional
connectivity between activated brain regions (cf. Rissman et al., 2004;
Fox et al., 2006). The main advantage of the ARF framework is that it
yields a more realistic description of the constituents of a functional
brain network, since it is not required to specify regions-of-interest a-
priori or to rely on a GLM analysis that is stringently corrected for
multiple comparisons.

The organization of the paper is as follows. First we describe the
details of the ARF method and its extension to connectivity analysis.
Second, we test the ARF connectivity method in simulations. Third, we
illustrate the method by applying it to single-subject data obtained in
an unconscious Go/No-Go study (cf. van Gaal et al., 2010). Finally, we
discuss limitations and possible extensions.

Methods

The data used in the ARF framework are beta- or t-values of a single-
subject or whole-group GLM analysis. These beta- or t-values are
described by a spatial model that consists of multiple activated regions.
The number of required regions is determined by the Bayesian
RI data using parameterized regions-of-interest,
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Information Criterion (BIC). The BIC penalizes the fit for the number of
parameters, keeping the number of regions in the spatial model low.
Hypothesis tests are performed on the parameters of each activated
region, allowing for hypotheses on location, spatial extent, and
amplitude. A full ARF analysis fits models with different numbers of
regions and selects the model with the smallest BIC value. Thereafter
hypothesis test on the amplitude and spatial extent parameters of the
selectedmodel are performed. Regionswith an amplitude and/or extent
thatdonot deviate fromzero are omitted fromthefinalmodel. Details of
the procedure can be found in Weeda et al. (2009)1.

In Weeda et al. (2009) the method was restricted to two
dimensions; that is single-slice or flattened maps. The current
implementation extends the ARF method to three-dimensional full
volume analysis. For purposes of clarity the details of the 3D extension
are described in detail in Appendix A.

Connectivity analysis

Within the ARF framework activity is modeled by multiple
activated regions. The framework is well suited for connectivity
analysis, as the identified regions can be directly used as regions-of-
interest (ROIs). The connectivity analysis consists of two steps. First,
the single-trial data are regressed on estimated activated regions
obtained from the ARF analysis. This creates trial-by-trial amplitude
estimates for each activated region. Second, these trial-by-trial
amplitudes are used to calculate functional connectivity estimates
between regions. Details of the two steps are explained below.

Single-trial amplitude estimation
Single-trial data are obtained by creating a model with a regressor

for each single-trial, convolved with a Hemodynamic Response
Function (HRF, cf. Boynton et al., 1996). The time-series are regressed
on this model using a standard GLM analysis. The beta values from this
analysis constitute the single-trial data (cf. Rissman et al., 2004),
which are input to the connectivity analysis.2

Let fj be the (N×1) vector of ARFmodel estimates of region j=1,…, J,
where J denotes the number of regions and N denotes the number of
voxels.We then construct an (N× J) designmatrix Fwith in eachcolumn
the model estimates fj for region j with unit amplitude. Note that no
spatial boundary for the estimated regions is set because the
contribution to the model of voxels far from the center is nearly zero.
The design matrix F is used to obtain single-trial estimates of the
amplitude of the activated regions.

Let yk be an (N×1) vector containing the single-trial data for all
voxels of trial k=1,…,K. For each trial k the data yk are regressed on
the model F using linear regression:

yk = Fγk + εk: ð1Þ

The vector of estimated single-trial amplitudes γ̂k of J regions is
then derived from:

γ̂k = ðF ′FÞ−1F ′yk: ð2Þ

Then the ( J×K) matrix G is constructed such that it has in each
column the single-trial amplitudes γ̂k.

Connectivity estimation
Functional connectivity estimates are obtained by correlating the

rows of G. The resulting ( J× J) matrix M contains the correlations
between regions. Given that the ARF parameter estimates are close to
1 The ARF procedure is available as an open-source package for R (R Development
Core Team, 2009) and can be downloaded from the authors' website: http://home.
medewerker.uva.nl/w.d.weeda1.

2 To compare performance of this regression approach with an approach using raw
time-series, simulations were performed. Details can be found in Appendix B.

Please cite this article as: Weeda, W.D., et al., Functional connectivi
NeuroImage (2010), doi:10.1016/j.neuroimage.2010.07.022
their optimal values, the correlation estimates inM are consistent (see
Appendix C).

Testing differences in connectivity
Differences in connectivity between conditions can be tested by

converting correlations to z-scores, calculating the difference between
these z-scores, and testing whether this difference is significant
(Myers andWell, 2003; ch. 18.3). The Fischer-z transformation is used
to convert each element mr,c of M to z-scores (Fisher, 1915):

zr;c =
1
2
ln

1 + mr;c

1−mr;c

" #
: ð3Þ

The difference of z-scores of conditions A and B is then calculated
using:

zdiff =
zAr;c−zBr;cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

KA−3
+ 1

KB−3

q ð4Þ

which, under the null hypothesis of no differences, is standard
normally distributed. This tests the null hypothesis that the
connectivity between regions r and c is equal across conditions A
and B.

Simulations

In simulations we investigate whether the ARF connectivity
framework can recover the correlation structure in the data. In the
simulations we varied several factors that may affect performance of
ARF connectivity estimates. We varied the size of regions, the shape of
regions and the amount of spatial smoothing applied to the data. In
addition we varied the amount of single-trial variation in the location
of regions and in the extent of regions.

In all conditions we created 3D fMRI volumes with three activated
regions. All regions were placed far apart to ensure a minimum of
spatial overlap. White noise was added according to the method
described in Weeda et al. (2009, Appendix A), using different levels
(.1, .5, 1, and 2) of single-trial signal-to-noise ratios (SNRs) commonly
found in fMRI studies (Huettel et al., 2001). For each trial the
amplitude of the signals was sampled from a multivariate normal
distribution with correlation matrix3:

1 :5 :7
:5 1 :35
:7 :35 1

2
4

3
5

to simulate a range of correlations between regions. The simulations
were performed 100 times for each SNR level. The variance–
covariance matrix defining the simulated regions was:

θ2x :01⋅θxθy −:1⋅θxθz
:01⋅θxθy θ2y :1⋅θyθz
−:1⋅θxθz :1⋅θyθz θ2z

2
64

3
75

Details of the simulation settings in each condition are given
below.

Size

The effect of size was investigated by simulating three Gaussian
shaped regions with different θx, θy, and θz parameters. The simulated
regions either contained 721 voxels within the 95% isocontour
3 The variance of the amplitude parameters over trials was set to 16,000 as
estimated from the real data by van Gaal et al. (2010).
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4 Only results from the correlations of .70 are shown. Effects for the correlations of
.35 and .5 are comparable and can be found in Figs. 1 and 2 of the Supplementary
Materials. Also, the ARF approach and the eigenvariate method produced comparable
results. Eigenvariate results were therefore omitted from the plots in Fig. 1.
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(denoted as size=2) or contained 2477 voxels within the 95%
isocontour (denoted as size=3).

Extent variation

Extent variation was simulated for size=2 by introducing single-
trial variation in the extent parameters θx, θy, and θz, which were
sampled from a normal distribution with sd of .25 or .50. This created
regions with varying extent ranging between 309 and 1389 voxels in
the sd=.25 condition and between 85 and 2477 voxels in the sd=.5
condition.

Location variation

Location variation was simulated for size=2 by introducing
single-trial variation in the center of regions, this variation was
sampled from a normal distribution with sd=1 or sd=2 for x, y and z
directions. This created location variation between −2 and 2 voxels
when sd=1 or between −4 and 4 voxels when sd=2.

Smoothing

The effect of smoothing was investigated for size=2. The single-
trial data was smoothed by an FWHM filter of 2 times voxel size or an
FWHM filter of 3 times voxel size.

Shape

The effect of region shape was investigated by taking three
anatomical shapes from the HarvardOxford Probabilistic Atlas (from
the FSL software package, Smith et al., 2004). The regions were the left
superior temporal gyrus (STG, 1250 voxels), the left inferior frontal
gyrus (IFG, 2918 voxels) and the left lateral occipital cortex (LOC,
4318 voxels). See Fig. 2, bottom-right panel, for an example of these
regions. The correlations between regions were all set to .5.

ARF connectivity estimation and standard methods
In each simulation, first an ARF model was fitted to averaged data.

In the simulations it was correctly assumed that three regions were
active. Then, using the model predictions, correlations between
regions were estimated as described in the Methods section. We
compared the connectivity estimates obtained from ARF with
standard methods: connectivity estimates derived from average
activity in ROIs and connectivity estimates based on an eigenvariate
approach (Friston et al., 2006). In the latter two approaches each ROI
consisted of voxels within the 95% isocontour of the known simulated
region.

Note that for the ARF simulations it is assumed that the number of
regions is known precisely. This yields an upper bound of ARF
performance. In the ‘average ROI’ analysis both the number and the
location of regions were known. Therefore, the average ROI analysis
also provides an upper bound of performance. In the ‘eigenvariate’
analysis both the number and location of ROIs were again assumed to
be known exactly. Also, the first eigenvariate was assumed to be
known exactly (i.e. estimated without error), thus providing an upper
bound of the precision that can be obtained. Note in addition that the
comparisons favor the ‘average ROI’ and ‘eigenvariate’ analyses over
the ARF method since in the standard methods both number and
location of regions are assumed to be known (and even the first
eigenvariate in the ‘eigenvariate’ approach), whereas in the ARF
method only the number of regions is assumed to be known.

Power
In the aforementioned simulations the number (ARF) or the

number and location (standard methods) of regions was known
precisely. In order to compare the power of these approaches (see also
Please cite this article as: Weeda, W.D., et al., Functional connectivi
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Weeda et al. (2009)) we performed a final set of simulations in which
the full ARF procedure was compared to False Discovery Rate (FDR,
Genovese et al., 2002) thresholding. In these simulations we
reanalyzed the dataset of the size=3 simulations using a full ARF
procedure: the method selects the number of regions according to the
lowest BIC value and subsequently tests amplitude and extent of these
regions using the Wald test (with pb .05). The ARF method was
contrasted with standard ROI detection using FDR correction, using
pb .05 and a minimum of 10 voxels above threshold within a
(5×5×5) box around the center of the simulated region.

Results
Fig. 1 shows results for simulations in which size, location

variation, extent variation, smoothing and signal-to-noise ratio were
varied4. Results show that correlations are severely attenuated by
noise in the average ROI analysis. This effect is strongest for the higher
correlations (see Fig. 1 and Supplementary Figs. 1 and 2). The ARF
method outperforms the average ROI method in all cases, especially in
situations where the signal-to-noise ratio is low. In the size
simulations (Fig. 1a) both methods perform better when region size
is increased; there is no indication that size differentially affects both
methods. In the location variation simulations (Fig. 1b) performance
of both methods decreases with increased location variation. ARF
performs better than the average ROI method under small location
variation; this advantage decreases with increased location variation.
In the varying extent simulations (Fig. 1c) performance of both
methods decreases with increased extent variation. The advantage of
the ARF method is especially pronounced when extent variation is
large. The smoothing simulations (compare Fig. 1a, left hand panel
(unsmoothed data) to Fig. 1d (smoothed data)) indicate that the
advantage of the ARF method decreases with increased smoothing.

Fig. 2 shows the results for simulations with realistically shaped
regions. It can be seen that the ARFmethod outperforms especially the
standard averaging method and to a lesser extent the eigenvariate
method.

Power

Results for the full ARF procedure are in Fig. 3. As can be seen the
ARF procedure outperforms the FDR method in the lower SNR
conditions (SNR=.1 and SNR=.5). In the SNR=.1 condition ARF
selects the correct model in 21% of cases, while FDR detects no regions
at all. For the SNR=.5 condition ARF selects the correct model in all
cases, while FDR only detects all regions in 41% of cases. For SNR=1
and SNR=2 both methods detect all regions.

False positive rate

To assess the false positive rate (i.e. the chance of detecting an
active region when there is no activity at all) of the ARF method we
simulated 100 null datasets that contained only noise. We fitted an
ARF model with three regions and tested with the Wald statistic (cf.
Appendix A) how many regions had significant (pb .05) amplitude
and extent parameters. The false positive rate was as required below
5%; that is 3%.

Empirical application

In order to illustrate the ARF method we analyzed a single subject
out of a dataset from a Go/No-Go experiment performed by van Gaal
et al. (2010). The subject performed a Go/No-Go task in which
ty analysis of fMRI data using parameterized regions-of-interest,
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Fig. 1. Functional connectivity estimates of the simulated data as a function of SNR.
Solid lines indicate estimates for the ARFmethod. Dashed lines indicate estimates based
on the average of an ROI. Error-bars indicate the 95% confidence interval of the
estimates. Panel (a) shows size variation, (b) shows location variation, (c) shows extent
variation and (d) shows smoothing variation.

Fig. 2. Functional connectivity estimates of the realistic shape simulations as a function
of SNR. Solid lines indicate estimates for the ARF method. Dashed lines indicate
estimates based on the average of an ROI, dotted lines indicate estimates based on the
first eigenvariate. Examples of the regions are depicted in the lower-right panel.

5 The Bonferroni and FDR thresholding was also applied to smoothed data
(FWHM=5mm), leading to approximately the same results.
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conscious No-Go trials (weakly masked No-Go cue) and unconscious
No-Go trials (strongly masked No-Go cue) weremixed randomly with
Go trials. Pre-processing followed van Gaal et al. with one exception
that the data were not spatially smoothed. A contrast of two
conditions was analyzed: the strongly masked Go condition where
the subject responded (Go) versus the strongly masked No-Go
condition where the subject responded (No-Go). The contrast of
No-GoNGo highlighted the ‘unconscious No-Go network’ (cf. van Gaal
et al.). This contrast was used to estimate the activated regions with
ARF. After demeaning the raw time-series to remove global effects,
the single-trial responses to each stimulus were estimated by
regressing the time-series to the convolved response function
(double-gamma HRF; Glover, 1999) of each trial. These data were
used to estimate the functional connectivity in the No-Go and Go
conditions with the ARF estimates.
Please cite this article as: Weeda, W.D., et al., Functional connectivi
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Results

The No-GoNGo contrast was not significant when thresholded at
p=.05 using Bonferroni correction. With False Discovery Rate (FDR)
correction (Genovese et al., 2002), only three (adjacent) voxels in the
left frontal cortex were significant5. Running an ARF analysis revealed
an optimal model of 23 activated regions of which 22 regions had
significant amplitude and spatial extent parameters (Bonferroni
corrected). Mostly, activated regions were located in the parietal
areas, motor areas (including the (pre) supplementary motor areas
and motor cortex) and frontal areas (including the inferior frontal
gyrus), consistent with typical results reported in group Go/No-Go
studies (cf. van Gaal et al., 2010). Further, replicating several
neuroimaging studies, activated regions were found also in some
sub-cortical areas (including cerebellum and globus pallidus) thought
to be involved in motor control and response inhibition (Aron et al.,
2007; Chambers et al., 2009). Parameter estimates of the regions are
reported in Table 1 of the Supplementary Materials (note that these
regions correspond roughly to the regions reported previously on a
group level; see Supplementary Table 2 of van Gaal et al. (2010)).

The analysis of differences in functional connectivity strength
between No-Go and Go conditions revealed four (commonly
observed) regions where correlations were significantly higher in
the No-Go condition than in the Go condition. Fig. 4 shows the
location of these four regions; Fig. 5 shows functional connectivity
estimates of these four regions. First of all the correlation between the
pre-supplementary motor area (pSMA) and motor cortex (MC)
increased from −.03 (Go) to −.35 (No-Go). Further, the correlation
between pSMA and left cerebellum (L-Cb) increased from −.34 (Go)
to−.58 (No-Go), whereas the correlation between the globus pallidus
(GP; output structure of the basal ganglia) and right cerebellum (R-
Cb) increased from .58 (Go) to .77 (No-Go).

Although the exact nature and functional interpretation of these
increased connectivity measures is not the key issue of this paper,
ty analysis of fMRI data using parameterized regions-of-interest,
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Fig. 3. Proportion of regions detected by the ARF and FDR methods. Bars indicate the proportion of regions detected by both methods as a function of SNR (lightest bar indicates 0
regions detected; darkest bar indicates 3 regions detected).
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previous research has identified a crucial role of the pSMA and basal
ganglia (including the GP) in response inhibition (Aron et al., 2007). In
addition, various studies have reported involvement of the Cb in
motor control as well as response inhibition on No-Go trials
(Chambers et al., 2009).
Discussion

Functional connectivity analysis with ARF can be a helpful tool in
the analysis of interactions between brain regions. Its most prominent
advantage is that a more realistic indication of regions in a network
can be obtained, since it is not required to specify regions-of-interest
a-priori or to rely on a GLM analysis that is stringently corrected for
multiple comparisons. Application of the full ARF procedure shows
that the method has increased sensitivity to detect ROIs in low SNR
conditions. In addition, results of simulations show that the method
can recover correlations between brain regions. Although estimates
are attenuated in low SNR conditions, ARF connectivity estimation
outperforms the average ROI method in all cases. Even in conditions
Fig. 4. Location of the activated regions (pre-) supplementary motor area (pSMA),
motor cortex (MC), left (L) and right (R) cerebellum (Cb), and globus pallidus (Gp).
Regions in red-yellow indicate activity where No-GoNGo. Regions in blue-green
indicate activity where GoNNo-Go. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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with spatially misspecified models (anatomical shape condition), ARF
outperforms the average ROI and eigenvariate methods.

The use of spatial models in the ARFmethodmakes it less sensitive
to noise than averaging activity within an ROI. More specifically, as the
ARF method weights activation by the spatial model, noise at edges of
ROIs does not influence estimation as much as in standard averaging.
In cases with anatomically shaped regions ARF also outperforms an
eigenvariate approach. This difference may be due to the difference in
weighting between the methods. The eigenvariate approach assigns
weights to voxels that are a function of the amount of temporal
variance explained by these voxels; these weights are independent of
physical location. ARF weights activation dependent on the physical
location: activity in the center is weighted highest and weights
decrease as the distance from the center increases.

Applying the ARF method to single-subject data revealed activa-
tion in areas consistent with many previous Go/No-Go studies (cf. van
Gaal et al., 2010) while standard thresholding in this single subject
yielded only one very small area of activation. Connectivity estimates
showed potentially insightful differences in connectivity strength
between regions typically associated with response inhibition when
comparing Go and No-Go conditions.

The ARF method uses an approach similar to that of Rissman et al.
(2004) to calculate trial-by-trial data. Estimation of trial-by-trial
Fig. 5. Functional connectivity with absolute connectivity strength greater in the No-Go
condition than the Go condition (pb.05). Numbers in red indicate correlation in the No-
Go condition; numbers in green indicate correlation in the Go condition. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

ty analysis of fMRI data using parameterized regions-of-interest,
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amplitudes is different as ARF uses spatial models to estimate these
amplitudes. Also, in comparison with the methods of Rissman et al.
and Rissman et al. (2004), ARF requires no a-priori specification of
ROIs.

This study leaves room for further exploration. First, correlations
are underestimated in low SNR conditions (cf. Spearman, 1904). This
attenuation of correlations due to noise is reduced in the ARF analysis,
but is still present. On the one hand this finding is comforting. Since
the estimates are conservative the chances of finding spurious
correlations are reduced. On the other hand, weak functional
couplings between activated brain areas might be missed. Future
work may consider extended ARF based methods that account for
attenuation due to noise. These methods should explicitly model the
noise (co)variance structure.

Second, the ARF framework is not limited to functional connec-
tivity estimation. The method can also be used to identify ROIs for
effective connectivity analyses like Dynamic Causal Modeling (Friston
et al., 2003), Structural Equation Modeling (McIntosh and Gonzalez-
Lima, 1994; Gonçalves and Hall, 2003), or graphical modeling
(Ramsey et al., 2010). The ARF framework thus provides a powerful,
flexible framework for the localization of — and the analysis of
functional connectivity between — activated brain areas.
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Appendix A. Extension to full volume fMRI analysis

The method of Activated Region Fitting (ARF) was first developed
for flattened activity maps of fMRI data (Weeda et al., 2009). In this
paper the method is extended to full volume fMRI analysis. This
extension encompasses changes to the spatial model and the test
statistics. In the paragraphs below the details of the changes are
explained.

Spatial model

Activated Region Fitting uses a spatial model with multiple
activated regions to describe an entire volume of fMRI data. A region
is modeled by a multivariate Gaussian. The three-dimensional model
for voxel n with n=1,…,N voxels and j=1,…J regions is:

f ðxn; θÞ = ∑
J

j=1

θ10j

ð2πÞ3=2jΣjj1=2 exp −1
2

xn−kj

� �
′Σ−1

j xn−kj

� �� �
: ð5Þ

The location of voxel n is contained in vector xn = xn; yn; znð Þ′. The
parameters for the location of the center of region j are in vector
kj = θ1j; θ2j; θ3j

� �
′. The parameters defining the shape of region j are in

matrix Σj:

Σj =

θ24j θ4jθ5jθ7j θ4jθ6jθ8j

θ4jθ5jθ7j θ25j θ5jθ6jθ9j

θ4jθ6jθ8j θ5jθ6jθ9j θ26j

2
6664

3
7775:

In Eq. (5) jΣjj, the determinant of Σj, is the spatial extent (i.e.
volume) of region j. Finally, the amplitude of region j is defined by θ10j.
Parameter estimation, model selection and estimation of the
covariance matrix of the parameter estimates is performed as in
Weeda et al. (2009). Parameters are estimated using Weighted Least
Squares. The number of regions is determined by using the Bayesian
Information Criterion (BIC). To accommodate model misspecification
Please cite this article as: Weeda, W.D., et al., Functional connectivi
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(in the number of spatial models to describe a volume as well as
misspecification in the shape of each region) a robust estimator of the
parameter covariancematrix is obtained from the Sandwich estimator
(Weeda et al., 2009; Waldorp, 2009).

Hypothesis testing

Let a θ̂j
� �

contain the hypotheses of interest, for example the 5 null
hypotheses: x location is equal to c1, y location is equal to c2, z location
is equal to c3, spatial extent of the region is zero, and amplitude of the
region is zero:

a′ðθˆ jÞ = θ1j−c1 θ2j−c2 θ3j−c3 j∑j j θ10j
x location y location z location extent amplitude

� �

Let matrix Âj contain the associated first-order derivatives to the
parameters in our example:

Âj =

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0
∂jΣjj
∂θ4j

∂jΣjj
∂θ5j

∂jΣjj
∂θ6j

∂jΣjj
∂θ7j

∂jΣjj
∂θ8j

∂jΣjj
∂θ9j

0

0 0 0 0 0 0 0 0 0 1

2
6666666664

3
7777777775
:

Let matrix Cj denote the covariance matrix of the parameter
estimates for region j. The test statistic then equals:

a′ðθ̂jÞ ÂjCj Â′j

h i
aðθ̂jÞ: ð6Þ

This test statistic is under the null hypothesis asymptotically F
distributed with N and N−pð Þ degrees of freedom (with p being the
number of parameters). This yields a multivariate test; univariate
tests are obtained by using the appropriate elements of a θ̂j

� �
and Âj

separately in Eq. (6).

Appendix B. Raw time-series versus trial-by-trial amplitude

Single-trial beta values constitute the input data for the ARF
procedure. An alternative way is to use raw time-series as input. On
request of one of the reviewers, we compare these two approaches in
a small simulation study.

For each voxel in a Gaussian shaped ROI we simulated raw time-
series of 2400 s containing 48 non-overlapping BOLD responses. The
raw time-series were created by convolving a stick function with a
standard HRF. The weights of the stick function differed to create a
time-series containing BOLD responses with different amplitudes.
These raw time-series were weighted by the (spatial) Gaussian
function and white noise was added under four SNR conditions (.1, .5,
1 and 2). For 100 datasets we simulated two ROIs in which the
simulated amplitudes of the BOLD responses (that is, the weights of
the stick function) of the ROIs correlated .5. This led to a correlation of
the raw time-series of around .92. The higher correlation is due to the
BOLD response being relatively slow and therefore highly correlated
in time.

To each dataset we fitted an ARF model with two regions. Using
the ARF model estimates we calculated connectivity using the ARF
method as described in the Methods section. We contrasted the ARF
method with an eigenvariate approach (Friston et al., 2006) (i) using
raw time-series, and (ii) using the single-trial beta values (Rissman
et al., 2004). The ROIs used in this approach were calculated using the
voxels in the 95% confidence interval of the regions estimated by ARF.

Results are shown in Fig. 6. As can be seen the ARF method
outperforms the eigenvariate approach using the beta values in the
SNR=.1 and SNR=.5 conditions. Fig. 6 also shows that estimates
ty analysis of fMRI data using parameterized regions-of-interest,
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Fig. 6. Connectivity estimates of the simulated data as a function of SNR. The solid black
line indicate estimates for the ARF method. Solid gray line indicates estimates
calculated using the eigenvariate approach on beta values. Dashed gray line indicates
estimates calculated using the eigenvariate approach on raw time-series. Error-bars
indicate the 95% confidence interval of the estimates.
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based on the raw time-series are attenuated by noise in all conditions;
that is, they never equal the true value of .92.

Appendix C. Consistency of correlation estimates

We need to show that the estimates of the correlations between
regions are consistent; that is, that the estimated correlation between
regions approaches the optimal correlation as the number of trials
tends to infinity. Our assumptions are (i) that the least squares (LS)
estimate of the ARF region parameter θ̂n is consistent for the optimal
value θ* which minimizes the expectation of the LS function Q θð Þ

E QðθÞf g = ∫ y−f ðθÞð Þ′W−1 y−f ðθÞð ÞgðyÞdy

where y contains the averaged data (that is the beta or t-values from a
GLM analysis),W contains the variances of the beta or t-values and f(θ)
contains theGaussianmodelwith parameters θ; and (ii) that y hasfinite
variance n−1/2Ψ. Note that we do not assume that the Gaussian ARF
model is correct (see White (1982) for examples).

The LS estimate θ̂n is thenwithin op n−1=2
� �

of θ⁎. Since thefirst-order
partial derivative of the Gaussian model in F(θ) is continuous (Weeda
et al., 2009), by (i) we have that F θ̂n

� �
tends to F θ�ð Þ as the number of

trials n goes to infinity. By assumption (ii), the estimate in Eq. (2) γ̂k =

F′Fð Þ−1F′yk for each trial k has finite variance F ′Fð Þ−1F′ΨF F′Fð Þ−1.
Additionally, it is easily seen that the estimate γ̂k is asymptotically
normally distributed with variance Ω = F′Fð Þ−1F′ΨF F′Fð Þ−1. That
means that each γ̂k is a realization of the random variable N γ�;Ωð Þ.
Therefore, the sample correlations in M obtained from the γk are
Please cite this article as: Weeda, W.D., et al., Functional connectivi
NeuroImage (2010), doi:10.1016/j.neuroimage.2010.07.022
consistent for the true correlations, as in any case with normally
distributed variables (see e.g., Bilodeau and Brenner (1999)).

Appendix D. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2010.07.022.
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