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Most of the current methods to assess effective connectivity from functional magnetic resonance imaging
(fMRI) rely on the assumption that all relevant brain regions are entered into the analysis. If this assumption is
untenable, which we believe is most often the case, then spurious connections between brain regions can
appear. In this paper we propose to use an ancestral graph to model connectivity, which provides a way to
avoid spurious connections. The ancestral graph is determined from trial-by-trial variation and not from the
time series. A random effects model is defined for ancestral graphs which allows for individual differences in
terms of graph parameters (e.g., connection strength). Procedures for model selection, model fit, and
hypothesis testing of ancestral graphs are proposed. The hypothesis test can be used to find differences in
connection strength between, for example, conditions. Monte Carlo simulations show that the ancestral graph
is appropriate to model connectivity from fMRI condition specific trial data. To assess the accuracy further, the
proposed method is applied to real fMRI data to determine how brain regions interact during speech
monitoring.
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Introduction

Effective connectivity between neuronal systems A and B has been
defined as the direct influence of A on B (Büchel and Friston, 2000;
Friston, 2007). In terms of deterministic systems this means that the
inputs of B come directly from A, and do not go through any other
variable. Several methods to estimate effective connectivity have been
suggested: structural equation modeling (Mclntosh and Gonzalez-
Lima, 1997; Buchel and Friston, 1997), dynamic causal modeling
(DCM, Friston et al., 2003; Penny and Holmes, 2004) or its nonlinear
extension (Stephan et al., 2008), dynamic Bayesianmodels (Rajapakse
and Zhou, 2007), and Granger causality analysis with bivariate
(Roebroeck et al., 2005) or multivariate time series (Eichler, 2005).
There aremany differences between thesemethods. For instance, DCM
only takes instantaneous relations into account (because it is based
purely on differential equations), whereas Granger causal models take
both instantaneous and lagged relations into account. But a common-
ality of these methods is that they all use the time series to estimate
effective connectivity. In functional magnetic resonance imaging
(fMRI), however, spurious connections could result from analyzing
the time series because the temporal resolution is too low (Eichler,
2005). Furthermore, except for the method of Eichler (2005), which
was applied to simultaneous EEG and fMRI, each of these methods
assumes that all relevant neuronal systems which could explain the
connection between A and B are in the analysis. It is however very
likely that there are neuronal systems not entered into the analysis,
and that therefore some of the connections are in fact spurious
(Eichler, 2005; Roebroeck et al., 2009). A neuronal system could be
missing because, for example, it did not survive some statistical
threshold, or it could be considered a priori irrelevant to the network.

In this paperwe argue that a particular graphicalmodel, an ancestral
graph, can be used to account for neuronal systems not entered into the
analysis when determining effective connectivity. In fMRI a graphical
model is a representation of a joint distribution of several neuronal
systems. We propose to estimate this joint distribution from the
replications of condition specific trials and not from the time series. By
using the replications instead of time series both instantaneous and
lagged connections end up in the model. A major benefit of graphical
models is that by considering a picture of a complicated multivariate
situation, the underlying probability distribution is simultaneously
considered (Whittaker, 1990; Cox andWermuth, 1996; Lauritzen, 1996;
Pearl, 2000; Edwards, 2003). An ancestral graph has three types of
connections (Richardson and Spirtes, 2002) which we will give the
interpretations of effective connectivity (influence), functional connec-
tivity (correlation), and connectivity due to unobserved neuronal
systems (unobserved common cause). Unobserved neuronal systems
are therefore explicitly taken into account in an ancestral graph.

http://dx.doi.org/10.1016/j.neuroimage.2010.10.054
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To test differences in strength of connectivity within a network or
between conditions a random effects model is used like that in
Beckmann et al. (2003), but transformed to variance parameters for
the ancestral graph. In the random effects model, subjects are
assumed to have different connection strengths originating from
one population distribution.

First, ancestral graphs and the interpretation of its parameters in
terms of connectivity are described. Second, estimation of the random
effects parameters is discussed. Third, an existing algorithm (Zhang,
2008) to ascertain connections in an ancestral graph is presented,
which together with a method to determine the best fitting model,
makes it possible to ascertain which model represents the group
network best. Fourth, a robust testing procedure is developed for
testing between ancestral graph parameters. And finally, the ancestral
graph model is applied to a data set on speech monitoring.

Ancestral graphs

We aim to model the connectivity of fMRI data by an ancestral
graph. This is achieved by considering whether conditional indepen-
dencies in the data are similar to those implied by the ancestral graph.
The key, therefore, to comparing data and model is to determine
the conditional independencies implied by the ancestral graph. First,
the definition of an ancestral graph is given and it is described
what the relation between a graph and a probability distribution is.
Then the interpretation of the ancestral graph parameters is given
when the assumed distribution is Gaussian.

Definition

A graph G consists of nodes in V and edges in E. Two examples are
given in Fig. 1, in which each node could represent a brain region.
The most popular graph is the directed acyclic graph (DAG), shown in
Fig. 1(a). In this type of graph all edges are directional (→) and there
can be no cycle (Pearl, 2000). An example of a cycle is 1→2→3→1. In
Fig. 1(b) there are directed, undirected (-), and bidirected (↔) edges.

The graph G cannot contain an edge from a node to itself or have
more than one edge between any two nodes. A node i is a parent of
jwhenever i→ j, i is a spouse of jwhenever i↔ j, and i is a neighbor of
jwhenever i− j. The set of nodes that are parents of i is denoted by pa(i),
the set of nodes that are spouses of i is denoted by sp(i), and the set of
nodes that are neighbors of i is denoted by ne(i). A sequence of edges
with no repetitions of nodes is called a path. If there is a path like i→⋯→ j
with only directed edges pointing to j, or i= j, then i is an ancestor of j,
denoted by i∈an(j).With these definitions, the definition of an ancestral
graph can be given as follows (Drton and Richardson, 2004).

Definition ancestral graph
A graph G=(V,E) with undirected, directed, and bidirected edges

is an ancestral graph if for all i∈V

(i) i∉an(pa(i)∪sp(i));
(ii) if ne(i)≠Ø, then pa(i)∪sp(i)=Ø
Fig. 1. In (a) a directed acyclic graph is shown (only directed edges and no cycles). In
(b) an ancestral graph is shown based on the DAG in (a). There are three types of edges:
directed, undirected and bidirected. The node u in (a) is unobserved resulting in a
bidirected edge between nodes 3 and 4 in (b), and s in (a) is conditioned on resulting in
a correlation between nodes 0 and 1 in (b).
The first condition says that there can be no cycles consisting of
directed or bidirected edges. The second condition says that there can
be no directional or bidirectional edges pointing to undirected edges.
An example of an ancestral graph is given in Fig. 1(b).

One of the key elements of a graph is separation. When a
probability distribution is compatible with a graph (see next
subsection), then it possible to determine conditional independencies
by considering separation in the graph. A collider at node i on a path
involving i has two arrowheads at i, that is, → i←, → i↔, ↔ i←, or
↔ i↔. Two nodes a and b are m-separated by c if (i) on the path
between a and b there is a collider node which is not c, or (ii) on the
path between a and b there is no collider and c intercepts the path
between a and b (Richardson and Spirtes, 2002). In Fig. 1(b) 0 is
separated from 2 by 1, which illustrates condition (ii); and 1 and 3 are
separated (without 2), which illustrates condition (i).

Probabilities and ancestral graphs

A probability distribution P can be associated with a graph G. By
doing so, conditional independencies can be determined from
separation in the graph. Let the nodes in V be identified with random
variables Yi for all i∈V and let P be the joint distribution of all Yi.
Furthermore, let YA denote the set of Yi such that i∈A, and YA⫫YB|YC
denotes that YA is independent of YB when conditioned on YC. The
connection between m-separation in graphs and conditional inde-
pendence is given by the global Markov property (Richardson and
Spirtes, 2002): YA is independent of YB given YC whenever A and B are
m-separated by YC. Whenever this holds P is said to be globally
Markov with respect to G. In Fig. 1(b) a probability distribution P is
globally Markov with respect to G if the following conditional
independencies hold: Y0⫫Y2|Y1, (Y0,Y1)⫫(Y3,Y4), and Y2⫫Y4|Y3. These
conditional independencies are, of course, precisely the m-separations
of the graph G.

The global Markov property indicates that a probability distribu-
tion P is compatible to G. This does not exclude, however, the
possibility that another graph G⁎ is also compatible with P. In other
words, there need not be a one-to-one correspondence between a
probability distribution and a graph. Consider two configurations and
their joint probability distributions

a→ c→ b P a; b; cð Þ = P að ÞP c jað ÞP b jcð Þ
a→ c← b P a; b; cð Þ = P að ÞP bð ÞP c ja; bð Þ ð1Þ

Because their factorizations in termsof components are different due
to the conditional independencies, it is possible to distinguish these two
configurations only with information of the probability distribution
(e.g., Pearl, 2000; Lauritzen, 1996). The best fit of the data to a specific
probability distribution is therefore essential (see Section 3). However,
there are configurations which are different but have identical
components in the factorization (Verma and Pearl, 1991). For example,
a→c→b is equivalent in terms of probability distributions to a←c→b
with joint probability distribution P(a,b,c)=P(c)P(a|c)P(b|c). They
are equivalent because of the symmetry in conditional probability:
P(c)P(a|c)=P(a,c)=P(a)P(c|a). So, a collider gives rise to different
conditional independencies, whereas other configurations do not.
The key to differentiating between models is, therefore, determined
by the set of colliders (Andersson et al., 1997).

In an ancestral graph the undirected and bidirected connections
have an interpretation that relates DAGs to ancestral graphs
(Richardson and Spirtes, 2002). Suppose that the node u in Fig. 1(a)
is unobserved. Then the conditional independencies that result in the
marginalized distribution are those that hold in Fig. 1(b) of the
ancestral graph. Therefore, a bidirected connection can be interpreted
as a connection resulting from an unobserved variable in a DAG.
Suppose now that s in Fig. 1(a) is conditioned on. Then, again, the
conditional independencies of the resulting distribution are those



Fig. 2. Example of an ancestral graph showing the interpretation of the edges in terms of
the statistical parameters of an ancestral graph.
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entailed by the ancestral graph in Fig. 1(b). And so, the undirected
connection between 0 and 1 can be interpreted as the consequence of
a variable (possibly unobserved) being conditioned on. In fact, any
conditioning or marginalizing will always result in an ancestral graph
(Richardson and Spirtes, 2002).

The property of ancestral graphs that marginalization and
conditioning result again in an ancestral graph can be used in
neuroimaging. Suppose that the node u in Fig. 1(a) represents a
neuronal system that is not observed because, for example, it is below
the multiple comparison threshold. The result of the unobserved u is
that it is marginalized over. In the ancestral graph in Fig. 1(b) this
results in the bidirected connection between 3 and 4. Similarly, if s
in Fig. 1(a) is unobserved but constant then the undirected connection
between 0 and 1 results. In both cases the resulting graph is still an
ancestral graph.

Ancestral graphs and connectivity

The interpretation of the three different types of edges between
nodes in an ancestral graph has a simple statistical interpretation
when it is assumed that the joint distribution of all variables is
Gaussian (Richardson and Spirtes, 2002). Functional connectivity will
be associated with an undirected edge i-j, effective connectivity will
be associated with a directed edge j→ i, and a connection due to an
unobserved neuronal systemwill be associated with a bidirected edge
i↔ j.

The parameterization associates each edge and node of the graph
with a parameter of the Gaussian distribution. An undirected
connection i-j is obtained whenever the parameter from the (positive
definite) matrix Λ=(λij) is λij≠0. A directed connection j→ i is
obtained whenever the parameter from the lower diagonal matrix
B=(βij) is βij≠0. And finally, a bidirected connection i↔ j is obtained
whenever the parameter from the (positive definite) matrix Ω=(ωij)
is ωij≠0. The variance matrix Σ of the p variables with joint Gaussian
distribution modeled by an ancestral graph by is (Richardson and
Spirtes, 2002)

Σ = B−1 Λ−1 0
0 Ω

� �
B−1
� �

′ ð2Þ

The interpretation of the three types of parameters each associated
with its own connection in the graph is now straightforward. First, the
matrix Λ is the inverse of the covariance matrix (precision matrix) for
the undirected part of G. That means that λij associated with an
undirected edge i-j, can be interpreted as a partial covariance between
i and j, that is, the covariance between i and jwith all other variables in
the undirected part of G conditioned on. Second, the parameter βij

associated with a directed edge j→ i, is the regression coefficient for
variable j in the regression of i. This is similar to the interpretation of
the parameters of a DAG with a Gaussian distribution. And third, the
parameterωij associated with a bidirected edge i↔ j, is the covariance
between residuals ei and ej where

ei = Yi− ∑
j∈pa ið Þ

βjYj: ð3Þ

The covariance between residuals has been associated with
unobserved common causes before (see e.g., Andersson et al., 1997).
In Fig. 2 the statistical interpretation of the edges of an ancestral graph
is given. The number of parameters q is the sum of the number of
nodes p in V and the number of connections in E.

To obtain estimates of these parameters, replications of observed
responses to each of the nodes is required (see Section 4 on how these
can be obtained). From these replications a joint probability
distribution is determined combined with assumption of normality
for the ancestral graph. In our application in Section 4, general linear
model parameters associated with a region of interest (ROI) are
estimated for each replication and are then used to obtain a
probability distribution for those ROIs. For purposes of testing
differences between connections the variance of the parameters is
also required. Even if the model is incorrect, statistical inference
should be possible. These issues are addressed in the next section.

Random effects model

We follow Henderson (see e.g., Robinson, 1991) for the derivation
of the random effects model. A joint density for the data and random
effects is defined. The random effects are then estimated by
maximizing this density with respect to the effects and population
parameters, that is, estimates are obtained by the method of
maximum likelihood. The random effects can be interpreted as if
the parameters of each subject are randomly drawn from a normal
distribution with unknown mean and variance (Verbeke and
Molenberghs, 2000; Beckmann et al., 2003).

Estimation

Let Yi=(yi1,yi2,…,yin) be the p×nmatrix of observed responses on
p regions and n independent replications (trials) of subject i=1,…,N.
It is assumed that for each subject i and each replication j the p×1
vector yij is normally distributed with mean zero (possibly after
subtraction of the mean) and p×p variance matrix Σi. The matrix Σi is
modeled for each subject i by an ancestral graph with parameters in Bi,
Λ i, and Ωi. The unique parameters for subject i are collected in the q×1
vector θi. We also assume that the parameters in θi are normally
distributed with unknown mean μ and q×q variance matrix Ψ. We
assumeadditionally that each subject has its own truevalue θ0i, sincewe
have n replications of each subject (see the Appendix for more details).

The parameters of interest are the population mean μ and variance
matrix Ψ. The individual effects θi for all N subjects are sometimes of
interest. The parameters and effects are estimated by maximum
likelihood (ML). ML-estimates are obtained from the joint density of y
and θi, denoted by f(y,θi ;μ,Ψ). Let Si = 1

n∑
n
j = 1 yijyij′ be the p×p

sample variance matrix for subject i with nNp and let Σi=Σ(θi). The
logarithm of the joint density of the data and the random effects,
denoted by L(μ,Ψ ;y,θi)= log f(y,θi ;μ,Ψ), is

L μ ;Ψ; y; θið Þ = −N n + qð Þ
2

log 2πð Þ−n
2
∑
N

i=1
log jΣi j−

n
2
∑
N

i=1
tr SiΣ

−1
i

h i

−N
2
log jΨ j−1

2
∑
N

i=1
θi−μð Þ′Ψ−1 θi−μð Þ:

ð4Þ

To obtain ML-estimates the maximum of L(μ,Ψ ;y,θi) is required
(see e.g., Demidenko, 2004; Robinson, 1991). The parameter
estimates of μ and Ψ are easily obtained as

μ̂ =
1
N

∑
N

i=1
θi and Ψ̂ =

1
N

∑
N

i=1
θi−μð Þ θi−μð Þ′ ð5Þ

image of Fig.�2


Fig. 3. Model 1 is shown in (a) where u is unobserved (signified by the strike through),
resulting in the bidirected connection betweennodes3 and4. In (b)model 2 is shownwith
nodes 0, 1, and u unobserved. The data generating model is with all nodes observed.
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Fig. 4. Ratio of estimated to true variance of the parameter β23 for the Hessian (red and
dashed) and sandwich (blue and continuous) methods. When the ratio is 1 the variance
estimate is good. In (a) for model 1 and in (b) for model 2.
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Of course, the individual effects in θi are required for these
estimates. In the Appendix it is shown that the ML-estimate of θi
obtained from the conditional log-likelihood Lc(θi ;μ,Ψ,y) is consis-
tent, which results in consistent estimates of μ andΨ. This means that
only the first part of the log-likelihood is required for the estimation of
the subject specific effects in θi. These subject specific effects are
obtained from the iterative conditional fitting (ICF) algorithm by
Drton and Richardson (2004) implemented in R. The ICF algorithm
makes use of the independence of the undirected and the directed
part of the ancestral graph, such that parameters in Λ i are obtained
directly, and parameters in Bi and Ωi are obtained by fitting a
conditional distribution with one node removed, iterated over all
nodes in the directed part until convergence. We refer to Drton and
Richardson (2004) for a full explanation of ICF.

The estimate of Ψ, the population variance matrix, could be
improved to also be able to estimate reliably the individual variance
matrix of the parameters. This can be achieved by using the asymptotic
representation of the estimate θ̂ni of the individual parameters.

θ̂ni = θ0i +
1
n
∑
n

j=1
H θ0ið Þ−1Jðyij; θ0iÞ + opðn−1=2Þ; ð6Þ

where J(yij ;θ0i) is the q×1 vector of first-order partial derivatives of
the log-likelihood for observation yij evaluated at θ0i, the true value of
subject i, and H(θ0i) is the q×q matrix with second-order partial
derivatives of the log-likelihood. This representation can be used in
the estimate Ψ̂ in Eq. (5) to obtain

Ψ̃ =
1
Nn

∑
N

i=1
H θ0ið Þ−1 1

n
∑
n

j=1
Jðyij; θ0iÞJðyij; θ0iÞ′

 !
H θ0ið Þ−1

: ð7Þ

This estimate is similar to the sandwich (e.g., White, 1982;Waldorp,
2009) in that it has the second-order derivatives outside of the product
of first-order derivatives. If it is assumed that the model is correct then
the product of first-order derivatives is equal to the Hessian, and only
the inverse of the Hessian remains (Van der Vaart, 1998;Waldorp et al.,
2005a). The estimate Ψ̃ also shows that the sandwich can bedefined for
each subject separately based on n replications, which is a single
element of the sum over N subjects. Since these results are derived for
large samples, it is of great interest to see what happens when the
sample sizes are small to moderate.

Monte Carlo simulations
To show that the estimates of the variance in Ψ̃ are accurate, we

perform Monte Carlo simulations. We show the performance of the
estimator obtained in (7), referred to as the sandwich, and compare it
to a more traditional estimate where only H(θ0i) is used (see e.g., Van
der Vaart, 1998). We compute both types of variance parameters
when there are one or more nodes missing.

To generate data we used the graph of Fig. 3 with all nodes
observed and using linear regressions. In equations, this model is

Y0 = e0 Y3 = β3uYu + e3
Y1 = β10Y0 + e1 Y4 = β4uYu + e4
Y2 = β21Y1 + β23Y3 + e2 Yu = eu

ð8Þ

where βij=0.5 for all i, j, and the ei are independent Gaussian white
noise (see Eichler, 2005, for similar settings). We used two different
models to estimate parameters. Model 1 is shown in Fig. 3(a), where
only node u is unobserved. Model 2 has in addition to unobserved
node u also unobserved nodes 0 and 1, shown in Fig. 3(b). In Fig. 4 the
ratio of estimated variance to true variance (obtained from 500
simulations) for sample sizes ranging from 10 to 100, is displayed for
the directional edge 2←3, that is the variance of parameter β23. In
model 1 the Hessian has a ratio closer to one at low sample sizes than
the sandwich, indicating that at lower sample sizes the Hessian
estimates the variance better. From a sample size of 30 both the
Hessian and sandwich are accurate. In model 2, however, the Hessian
can be seen to overestimate the variance for any number of replica-
tions. In contrast, the sandwich seems to settle on the correct variance
from about 20 replications.
Model selection and model fit

There are two issues to consider in determining connectivity:
which model best represents the group of subjects and does the
model fit each subject. Determining the model that best represents
the group is in line with a random effects model. Individual fits can be

image of Fig.�3
image of Fig.�4
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important to determine what differences there are between subjects
in terms of networks. Both issues are addressed.

In modeling networks the number of models increases exponen-
tially (Whittaker, 1990; Marrelec et al., 2006). In the case of ancestral
graphs with p regions there are at least 3p(p−1)/2 possible models but
always less than 4p(p−1)/2, because there are three types of edges or
no edge. So with p=4 regions, the number of models is between 729
and approximately 4000. The problem is that this is a huge number of
models to select from. There are two ways to approach this issue: (i)
use predefined regions, hypotheses, to model connectivity, as in DCM,
or (ii) perform an automated search.We use a semi-automated search
combined with a local search to obtain the best maximal ancestral
graphs. The automated search is obtained from an algorithm
described in an excellent paper by Zhang (2008) and also in Spirtes
et al. (1993). The algorithm searches for the most informative
ancestral graph that can be obtained given the probability distribu-
tion, referred to as the fast causal inference (FCI) algorithm (we used
the original FCI algorithm). The result is not necessarily a maximal
ancestral graph. Therefore, a second stage is required to obtain a
maximal ancestral graph. We refer to Zhang (2008) for a complete
description of the FCI algorithm.

The FCI algorithm is implemented in R using the SIN method by
Drton and Perlman (2004) to take into account the multiple
comparison problem when determining conditional independencies.
In this procedure the edge set E of G contains only undirected
connections, and hence the covariance matrix is modeled by Λ, the
inverse of the covariance matrix containing partial covariances. In SIN
the null hypothesis H0, ij :λij=0 is tested for each of the p(p−1)/2
possible connections for p nodes while controlling for multiple
comparisons (Drton and Perlman, 2004). The tests on conditional
independencies are used in the FCI algorithm to decide whether edges
should be in the set of edges in the graph for that subject. In the
second stage several ancestral graphs that are minor variations of the
FCI output are compared. These ancestral graphs are compared using a
score function.

The score function we use is the Akaike information criterion
(Akaike, 1973). We use the Akaike information criterion (AIC)
because it fits well with the possibility of missing regions (and
hence connections). The AIC is predicated on the notion that the true
model is not in the set of possible models, but is in theory attainable
asymptotically (Bozdogan, 2000). But due to our lack of information
(limited number of observations), the true model is out of reach. The
AIC is defined for ancestral graph model Gq with q parameters as
(Akaike, 1973)

AICðGqÞ = −2L θi; μ;Ψ; yð Þ + 2q ð9Þ

The main aim of the AIC is to keep in balance the bias and variance
of the estimated parameters (Casteren and Gooijer, 1997). Of course,
changing direction in an ancestral graph will not change the number
of parameters and so the penalty will remain the same. But if the log-
likelihood decreases because of the conditional probabilities in
correspondence with the change of direction, then the AIC will
indicate this. The AIC can be used to determine the best model at the
group and at the individual level.

That the model is best according to the AIC does not entail that it
fits, as compared to the saturated model. Together with the AIC we
therefore require a model fit procedure to obtain the best fitting
model for all subjects. Many fit procedures exist (see e.g., Claeskens
and Hjort, 2008). However, our objective is to fit a model that is
approximately correct (se e.g., Waldorp et al., 2005b). To that end, a
modification of the likelihood ratio test is used. The likelihood ratio
(LR) test has asymptotically a chi-square distribution when the model
is correct (Young and Smith, 2005). With approximate models,
however, the LR rejects the model more often than expected.
Let the null hypothesis be H0 : θ∈ A⊂Rq and the alternative
HA :θ ∉ A, which corresponds to using the unrestricted model with
the variance matrix S. The LR test is defined for the ancestral graph as

λA = log
maxθ∈AL
maxθ∉AL

: ð10Þ

As is seen below, when an ancestral graph is fitted to data with an
unobserved node u (as in Fig. 3(a)), then the LR test rejects H0 more
often than a level of 5%, say. However, an ancestral graph with a
bidirected edge represents a good approximation. Therefore, we
would like to accept the model in H0 when the ancestral graph
represents missing nodes as bidirected edges. In order to account for
such approximations, we use a modified version of the LR test. This
modification was proposed as an improvement to a Bartlett-type
correction for small samples (Yuan and Bentler, 1997). But the
modification is of the order Op(n−1), and so can be considered as a
small correction towards the null hypothesis depending on the size of
LR. The modification was proposed for least squares type estimators,
but Browne (1974) has shown that the difference between the LR and
least square type estimator is asymptotically zero. The modified
version is defined as

TA =
λA

1 + λA = n
: ð11Þ

The test TAhas asymptotically a chi-squaredistributionwith p(p+1)/
2−q degrees of freedom, where p is the number of nodes and q is the
number of parameters of the ancestral graph. Because this is still an
asymptotic result,Monte Carlo simulations are required todetermine the
behavior in small samples.

Monte Carlo simulations for model selection and model fit
To show the performance of the model selection with the AIC and

model fit with the LR and TA procedures, we consider the two models
of the previous section shown in Fig. 3. The performance measure for
model selection is percentage of correct decisions using the AIC, and
for model fit the measures are false positive rate (FPR) and power of
TA. The FPR refers to the probability of rejecting amodel when in fact it
is a good approximation. And power is the probability that the model
is rejected given that the graph is a poor approximation.

Data are generated by the ancestral graph of Fig. 3(a). To evaluate
performance of the AIC, the percentage of correct decisions by the AIC
was computed for two competing ancestral graphs for each of the two
models. The competing graphs were the correct one with the edge
from 2←3 and the incorrect one with the edge reversed to 2→3.
Fig. 5 shows that the AIC is quite accurate for model 1 with only one
unobserved node but less accurate when there are many unobserved
nodes, as in model 2.

To evaluate model fit we used a common significance level of 5%. A
correct model fit procedure should reject the correct model no more
than 5%, that is, the false positive rate (FPR) should not exceed 0.05. In
model 1 there are 5(5+1)/2−9=6 degrees of freedom, which
results in a threshold value of χ6

2(0.05)=12.592. For model 2 there is
3(3+1)/2−5=1 degree of freedom, which leads to a threshold of χ1

2

(0.05)=3.841. To compute the power the same modification was
applied to both models 1 and 2, in which the edge 2←3 was changed
to 2→3.

Formodel 1 in Fig. 6(a) it is clearly seen that the FPR of the LR is too
high at lower number of replications. Themodified version TA remains
below the 5% level for all n. Both the LR and TA converge to the 5%
level. The power formodel 1 in Fig. 6(c) is higher for the LR than for TA.
This was expected because TA is a smaller version of LR, making it
more difficult to reject a graph with TA than with LR. For model 2 the
FPR of the LR is only slightly too high (Fig. 6(b)), and for TA remains
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around 0.05 for all number of replications. The power of the LR and TA
in Fig. 6(d) is about the same for model 2 and does not exceed 0.20.

In conclusion, we can say that when the model is reasonably close
to the data generating ancestral graph, then it is likely that the best
fitting model can be found. If, however, the model has many un-
observed nodes, then it is much more difficult to find the best fitting
model.
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Testing parameters

When a model has been selected, parameters of the model can be
tested. We follow general methods for random effects analysis (e.g.,
Beckmann et al., 2003; Verbeke and Molenberghs, 2000; Penny and
Holmes, 2004)). The parameters of the ancestral graphmodel for each
subject are collected in θi for i=1,…,N. All subjects can be
concatenated into a single Nq×1 vector θ. Then a contrast C can be
constructed to test the null hypothesis H0 :Cθ=u, where u is a
constant, often zero. The variance of the estimate C θ̂n is then C Ψ̃bC′,

where Ψ̃b is the Nq×Nq block diagonal matrix diag Ψ̃1;…; Ψ̃N

� �
. We

can then construct a Wald test (Young and Smith, 2005; Waldorp,
2009)

W =
n−k
nk

ðC θ̂n−uÞ′ðC Ψ̃bC′Þ−1ðC θ̂n−uÞ; ð12Þ

where n is the number of replications and k is the number of
independent contrasts in C. This test is approximately F-distributed
with degrees of freedom k and n-k under H0. This result is based on
two approximations: (i) the estimate θ̂n is locally asymptotically
normal, and (ii) in the first-order partial derivatives of the likelihood,
the difference between the sample and modeled variance matrix is
asymptotically distributed as normal (see Appendix for details). A
simple example of the Wald test is the test on the average across
subjects (Beckmann et al., 2003). We average the estimate of both the
parameters and the variance across subjects to obtain estimates of the
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population mean and variance matrix as in Eq. (5). Then we can
construct a simple contrast c′ to test the difference between two
average parameters, and obtain c′=(1,−1,0,…,0), for example. We
then have

Wc =
Nn−1
Nn

ðc′μ̂Þ2

c′
�
Ψc

: ð14Þ

This test is applied to real data in the next section.

Monte Carlo simulations for the Wald test
To determine whether the asymptotic approximations of theWald

test are adequate, Monte Carlo simulations were performed. Model 1
(Fig. 3(a)) from the previous sections was used to evaluate the false
positive rate (FPR) and power of theWald test on averages in Eq. (13).
The null hypothesis H0 :β01=β21 was tested. For the FPR the null
hypothesis was true; to compute the power the values of the param-
eters were set to β01=0.2 and β21=0.7. In Fig. 7 it can be seen that
the FPR is approximately at the nominal level of 5% and that the power
increases quickly with the number of replications, and is high with
about 50 replications. In conclusion, the Wald test appears to be valid
and has reasonable power at moderate sample sizes.

Application to real data

An ancestral graph combinedwith a random effects model appears
to be appropriate theoretically. But, of course, it is essential to
determine whether the results of the method actually make sense
using real data. In this section we describe how an ancestral graph can
be obtained and how its parameters can be tested using data from an
fMRI experiment on speech monitoring.

One objective of the study was to determine which brain regions
are involved in speech monitoring and how these regions interact
(Christoffels et al., submitted). The task was to name pictures out loud
while noise masked the self-produced speech (similar to Christoffels
et al., 2007). The noise masking was varied with four levels, from no
noise to loud noise. A blocked design was used to implement the
different conditions. It was predicted that as the level of the noise
mask increased, the attenuation in the superior temporal gyrus
decreased due to a cancelation process.

A contrast of the main effect of speaking with and without noise
was tested with a random effects analysis of the general linear model
(GLM) implemented in BrainVoyager QX (Goebel et al., 2006), and
was thresholded at a false discovery rate of 0.05. The analysis included
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Fig. 7. Probability to reject the null hypothesis conditional on either the null being true
(FPR, red, dashed line) or conditional on the null being false (power, blue, continuous
line). The gray line at 0.05 is the nominal significance level.
functional imaging data of N=11 subjects. We selected five regions
from a random effects result: supplementary motor area (SMA),
insula (INS), cerebellum (CB), superior temporal gyrus (STG), and
anterior cingulate cortex (ACC). For these regions we obtained the
standardized amplitude parameters of the GLM for each of 12
replications in all four noise masking conditions (for more details,
see Christoffels et al., submitted). Since it seems reasonable to assume
that the network consists of the same set of regions in each of the
conditions, we obtained n=48 replications for each subject.

The assumption of normality for the ancestral graph can be
investigated for each region by comparing the quantiles of the sample
and the quantiles of the normal distribution. The comparisons for INS
and SMA are shown in Fig. 8 for one subject. The figure shows that the
observations from the sample with n=48 are all reasonably close to
the line of expected quantiles of the normal distribution. This indicates
that the GLM parameters are approximately normally distributed.

The two stage procedure to find the ancestral graph starts with the
FCI algorithm (Zhang, 2008) using the SIN approach (Drton and
Perlman, 2004) to determine connections. Following Drton and
Perlman (2004) the algorithm was used with a nominal significance
level of 0.3, which made it easier for connections to enter the model
(see Drton and Perlman, 2004, for a discussion on this). In Fig. 9 the
plots for all 11 subjects are shown with the connections derived from
FCI for each subject separately (the connections from FCI corre-
sponded almost exactly to the SIN procedure for undirected graphs
with all regions entered). From the FCI output a connection was
thought to be relevant at the group level if at least three (an arbitrary
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Fig. 8. Comparison of sample and theoretical quantiles (qq-plot) based on n=48. In
(a) the comparison for INS and in (b) the comparison for SMA for one subject. The line
indicates where the observations (open circles) are expected to be according to the
theoretical normal distribution.



Fig. 9. Output of the FCI algorithm in combination with SIN for each of the 11 subjects. Note that only subject 1 has directed connections to the INS. Subjects are ordered from left to
right and top to bottom.
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choice, which becomes irrelevant because of subsequent group
modelling) subjects had the connection. This resulted in the
connections INS-SMA, STG-ACC, STG-CB, STG-SMA, and ACC-INS.
From these five connections three models containing undirected,
directed and bidirected connections were generated. Model A is
shown in Fig. 10. Model B has one additional connection CB→STG and
an undirected connection replaced by SMA→STG. Model C has two
Fig. 10. Ancestral graph model A represented on the brain. The model nodes (regions)
and paths are superimposed on a three-dimensional inflated representation of the
cortical sheet of the left hemisphere. The figure shows the lateral and medial views of
the same hemisphere. Note that the connection between SMA and STG is undirected.
The transparent yellow of the INS refers to the fact that the INS is behind the opercula.
For explanations of abbreviations, see text.
additional connections compared with A, STG→INS and STG→ACC.
For these models AIC values were computed and compared at the
group level. From Table 1 it can be seen that model A had the lowest
AIC value and is to be preferred at the group level. To investigate
individual differences, AIC values were also compared at the
individual level, also shown in Table 1. It can be seen that 9 out of
the 11 subjects had the lowest AIC value for Model A.

Tomake sure that there were nomissing regions which could have
caused some of the connections, bidirectional edges were used to see
if the fit improved. For none of the edges did a bidirectional edge
improve the fit. This means that model A is the best candidate for nine
subjects and that it is unlikely that there are spurious connections.

Finally, TA was used to determine that for the same nine subjects
the model fits. In Table 1 it can be seen that model A fits the same nine
subjects as the AIC indicated was the best model. Interestingly, for
subject 2 model B was best according the AIC but no model fits
according to TA. The combination of the AIC and TA provides evidence
that the network is similar for nine subjects. These nine subjects can
therefore be used in the random effects analysis to test for differences
in connection strengths.

An interesting comparison to make is between the connections from
theACC to either the INSor theCB. A stronger connection fromtheACC to
either to INS or CB means that one of the connections is more dominant
with respect to the other. To test for a difference in connection strength,
the Wald test was used, introduced in Section 3.3. This is the test across
averaged parameters and variances given in the example. The null
hypothesis states that in the population there is no difference between
βACC→ INS and βACC→CB. The connection strengths of the average across
the 9 subjects are �βACC→INS = 0:258 and �βACC→CB = 0:234 (multiplied
by −1 for the usual regression interpretation). Then the Wald test is
W=0.0056 with degrees of freedom 1 and Nn−1=9(48)−1=431

image of Fig.�10


Table 1
Model comparisons for models A, B, and C using the AIC at the group level in the first
row and at the individual level in the second row. In the third to fifth rows are the fits of
the three models where dot indicates whether model A, B, or C fits according to TA at
level 0.05.

Model

A B C

−7819.548 −7625.408 −7592.915

Subjects

1 2 3 4 5 6 7 8 9 10 11

AIC min{A, B, C} A C A A A A A A B A A
Fit TA(A • • • • • • • • • •

Fit TA(B) • • • • • • •

Fit TA(C) • • • • • • •
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and p-value p=0.940. This result indicates that there is no evidence
against the hypotheses that on average there is no difference in strength
between the two edges.

Conclusion

Assessing effective connectivity relies on methods that take into
account that all brain regions which influence the network are in the
analysis. If this assumption is untenable, which we believe is most
often the case, then spurious connections between brain regions can
result. The framework we proposed using ancestral graphs provides a
way to avoid spurious connections. An ancestral graph can distinguish
between effective and functional connectivity on the one hand and
unobserved causes on the other hand.

The simulations showed that an ancestral graph provides a good
approximation when some of the connections or some of the brain
regions are not in the analysis. The estimation of parameters and
model selection work because omitting regions still yields an
ancestral graph, a property specific to ancestral graphs. The analysis
of the speech monitoring data showed that it is possible to select a
model and test specific hypotheses about the network using the
random effects model.

Any method relies on the tenability of its assumptions. The
assumptions of the framework presented here are (i) the ancestral
graph is a reasonable approximation to the network, and (ii) the data
obtained from the brain regions should be approximately normal. As
to the first assumption, the simulations showed that when the
ancestral graph had most of the nodes and connections of the
underlying network, then it is useful to assess connectivity. When
many of the nodes and connections are missing, assessing effective
connectivity becomes more difficult. The second assumption about
normality was investigated using the data on speech monitoring. It
appeared that the coefficients from the GLM were indeed approxi-
mately normally distributed. It is at present unclear how severe the
consequences are when this assumption is violated. However, when
many voxels are used to obtain a single random variable to represent a
brain region (e.g., an average over voxels of GLM β-coefficients), then
according to the central limit theorem, it is reasonable in general to
assume that this parameter is approximately normally distributed.
Furthermore, it has been found that a contrast of two fMRI images
is almost indistinguishable from a normal distribution (Wink and
Roerdink, 2006).

The selection of the network depends to a great extent on the
criterion used to determine the best network for the data. Here we
used the AIC because it is in line with the idea of ancestral graphs that
some nodes may be missing and because the AIC is relatively
straightforward to implement. However, the AIC is a very general
procedure to select a model and is known to be inconsistent
(Burnham and Anderson, 2004; Grunwald, 2000). Currently, we are
improving the selection procedure by considering a problem specific
method to determine network connectivity (Claeskens and Hjort,
2008). In connection with this model selection, we are also working
on improving the current version of the FCI algorithmto include all rules
to make the procedure consistent (Zhang, 2008). Furthermore, we are
working on large scale networks (e.g., (Valdés-Sosa et al., 2005)) in
combination with ancestral graphs. When large scale networks can be
analyzed using ancestral graphs, it may be better possible to combine
structural and functional information in a single graph.

In the application to the speech monitoring data we used the GLM
to obtain ROIs. Then we obtained an average of the GLM coefficients
from these ROIs to obtain the variance matrix to compare with the
variance matrix of the ancestral graph. It can be argued that both the
way in which the ROIs were determined and using the average to
represent the entire ROI are suboptimal. A better way of obtaining a
ROI is to use a spatial model for BOLD activity like that in Weeda et al.
(2009). Subsequently, the amplitude coefficient of such a ROI would
be a better representative of the ROI than the average of GLM
coefficients. We plan to combine both methods in the future.

Appendix

Model assumptions

To include the true scores for each subject we are in fact assuming
a third level in the random effects model. To obtain the two-level
model again requires additional assumptions. We already had the
assumption that the data Y are N(0,Σ). We need additionally that (i)
the variance of the random effects is N(θ0i,σ2Ψ), (ii) that σ is small,
and (iii) that θ0i are from the population N(μ,Ψ). The first and second
assumptions say that the variation of the individual effects is
proportional to the population variance but much smaller. This is
not an unreasonable assumption since the subjects are derived from
that population and it is likely that within subject variation is smaller
than between subject variation. Intuitively you would expect from
these assumptions thatwith small σ the third level has aminor impact
because the probability is high that we obtain a value close to the true
value for that subject. From the assumptions above the log-likelihood
is (omitting constants)

L θi; μ ;Ψ; yð Þ = −n
2
∑
N

i=1
log jΣi j−

n
2
∑
N

i=1
tr SiΣ

−1
i

h i

−N
2
log jσ2Ψ j−1

2
∑
N

i=1
θi−θ0ið Þ′σ−2Ψ−1 θi−θ0ið Þ

−N
2
log jΨ j−1

2
∑
N

i=1
θ0i−μð Þ′Ψ−1 θ0i−μð Þ:

The estimate of θ0i is then θ̂0i = 1−σ−2
� �−1 μ−σ−2θi

� �
. It is easy

to see that when σ↓0 then θ̂0i = θi. Hence, for values of σ close to
zero, the three-level model can be approximated by the two-level
model where the true value of each subject is approximately obtained.

Consistency

We will show that the parameters obtained by estimating the
random effects for each subject separately and then using them to
estimate the population parameters leads to consistent estimates.
Furthermore, we show that the order of taking limits (subjects and
trials) has no consequence on the estimate. That is, the maximizer of
the (nonstochastic) log-likelihood is the same.

We use a classical approach to show consistency (e.g., Amemiya,
1985, Theorem 4.1.1). If the assumptions of this theorem hold, then
the estimates are consistent. This theorem makes it easy to consider
more than one limit process at a time (see e.g., Amemiya, 1971).
Let γ=(μ,Ψ,θ)∈ℝs be the collection of all parameters, and let Sni=
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n−1∑ j=1
n yijy′ij, where the subscript n is used to emphasize its

dependence on the number of trials n. The three assumptions of
that theorem are (i) the parameter space Γ is a compact subset of
ℝs, (ii) LnN(γ) is continuous in γ for all (measurable) y, and (iii) the
normalized log-likelihood (nN)−1LnN(γ) converges in probability to
a nonstochastic function L(γ) uniformly in γ as n,N→∞, and attains
a unique global maximum at γ0. Assumptions (i) and (ii) are easy to
satisfy. Assumption (iii) needs to be verified. We are dealing with
the limits of trials n→∞ and subjects N→∞. The normalized log-
likelihood is (omitting the irrelevant constant)

1
nN

LnN γð Þ = − 1
2N

∑
N

i=1
log jΣi j−

1
2N

∑
N

i=1
tr SniΣ

−1
i

h i

− 1
2n

log jΨ j− 1
2n

tr
1
N

∑
N

i=1
θi−μð Þ′Ψ−1 θi−μð Þ

" #
:

The first term involves only the nonstochastic componentsΣi and so
is irrelevant. The last two terms will vanish because they contain n−1

andno sumover trials. The second term−(2N)−1∑ i=1
N tr[SniΣi

−1] is of
interest. (Note that the same result is obtained for the three-levelmodel,
and hence the following is also true for the three-level model.) We
intend to show that assumption (iii) holds. Assume in addition to the
assumptions in the text and (i) and (ii) above that (iv) E{Sni}=Σ0i for
each i, whereΣ0i=Σ(θ0i) is the true variancematrix of subject i, (v) that
maxisupθE {|tr[SniΣi]|}b∞, (vi) that maxi E {||J(yij ;θ0i)J(yij ;θ0i)′||}b∞,
(vii) that the trials are identically and independently distributed, and
(viii) that subjects are uncorrelated. If convergence is first with respect
to the trials and then to the subjects (n,N)→∞, then by (iv) and (vii)
we can apply the weak law of large numbers (WLLN) and we have that
Sni−Σ0i=op(1) for all i, and so by the continuity theorem (see e.g., Van
der Vaart, 1998)

1
N

∑
N

i=1
tr SniΣ

−1
i

h i
− 1

N
∑
N

i=1
tr Σ0iΣ

−1
i

h i
= op 1ð Þ n;Nð Þ→∞:

For the reverse order of limits we assume additionally (viii) and
use Chebyshev's WLLN (see e.g., Serfling, 1980) to establish the same
convergence but now for the reverse order (N,n)→∞. Note that in
neither case of the order of taking limits need the term converge to a
constant, the nonstochastic part is required to follow the stochastic
part closely. Then by (v) the log-likelihood converges in probability to
a nonstochastic function, which has unique maximizer θi=θ0i for all i.
It is unique because themapping θ↦Σθ is one-to-one (Richardson and
Spirtes, 2002, Cor. 8.8). The consistency of μ̂ and Ψ̂ follow by applying
the WLLN. Using the asymptotic approximation of θ̂ni in Eq. (6) we
have that Efθ̂ig = θ0i for all i. It follows from the finite variance
assumption in (vi) that N−1∑N

i = 1 θ̂ni−N−1∑N
i = 1 θ0 = op 1ð Þ as

N→∞. If the average is μ then we are done, since then also
Ψ̂ðθ̂Þ−Ψ̂ θ0ð Þ = op 1ð Þ as N→∞.

The Wald statistic

To determine the degrees of freedom for the Wald test, the dis-
tributions of the two components C θ̂n and C Ψ̃bC need to be established
(Bilodeau and Brenner, 1999). The estimate θ̂n is locally asymptotically
normal,whenwe are not too far from the truth (O(n−1/2)). Hence, taking
the inner product in the Wald test gives a sum of squared normal
variables consisting of k components, which provides the first set of
degrees of freedom. As for the second set of degrees of freedom, the
distribution of Ψ̃i needs to be established. The stochasticity in this case
comes from the differences of the squares of the data and the model:
1
n yijyij′−Σi. This converges for large n to a normal variablewith zeromean
and variance proportional to the sandwich (Van der Vaart, 1998). And
since the sum contains n elements constrained by k components in C,
then by the same reasoning as before, we obtain n-k degrees of freedom.
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